# MULTIPLYING AND DIVIDING

Name:

| k | Ley |  |
|---|-----|--|
|   |     |  |

Date:\_

Period:

### **SECTION 2.5 LONG DIVISION**

### **VOCABULARY**

| DEFINITION                                                           | EXAMPLE       |
|----------------------------------------------------------------------|---------------|
| Scaffolding: a division method where partial quotients are computed, | 42 ÷ 2 = 21   |
| stacked, and combined                                                | 2) H2<br>- 40 |
|                                                                      | <u>-1</u>     |

Big Idea: How do we model long division using scaffolding?

### **EXPLORATION 1: THE DIVISION ALGORITHM**

We have seen how closely related multiplication and division are. For example, we know  $8 \div 4 = 2$ because  $4 \times 2 = 8$ . Also recall that in the long division form, the multiplication fact is rewritten as

 $4\sqrt{\frac{2}{8}}$  The area model looks like this:



We have the **dividend** 8 "under" the **quotient** 2, and the **divisor** 4 is to the left of the dividend.

By changing the dividend to 9, our problem becomes  $9 \div 4$ . Because  $8 \div 4 = 2$ , we see that  $9 \div 4$  must be more than 2. In the long division form we have,

The area model looks like this:



The quotient is 2, and the remainder is 1.

Now consider the problem,  $84 \div 4$ . We know that  $80 \div 4$  is 20 and  $4 \div 4$  is 1. Putting these together shows  $84 \div 4 = 21$ .

Here is the area model for this problem:



OR

This is called the **scaffolding** method because the different partial quotients are first computed and stacked, then combined, much like a scaffold is used in constructing a building.

#### **PROBLEMS:**

1. Use the scaffolding method to compute the following quotients. You may sketch a picture of the corresponding area model if it helps.

a. 
$$52 \div 4 = 13$$
 b.  $960 \div 6 = 160$  c.  $2,175 \div 25$   $\frac{3}{4}$   $\frac{3}{10}$   $\frac{$ 

2. In dividing, we know that it is more common to start with the largest place value to determine the quotient and then gradually include the smaller place values. Let's try a problem using that method. In the space below work  $2153 \div 14$ .

## **TEXAS Mathworks**

#### **MATH EXPLORATIONS Part 1**

Another way to think about this problem is to consider the related multiplication statement. Because the division problem is, "What does  $2,153 \div 14$  equal?" the related multiplication statement reads, "What times 14 equals 2,153?"

| what? |    |
|-------|----|
| 2,153 | 14 |
|       |    |

3. The area of Robert's dorm room is 96 square feet. The room is 8 feet long. What is the width?

4. Compute the following quotients and remainders. Check your answer with a visual method. Identify the dividend, quotient, divisor, and remainder.

a. 
$$265 \div 2$$

Dividend is  $265$ 

Divisor is  $2$ 

Quotient is  $132$ 

Remainder is  $1$ 

Dividend is  $99 \div 15$ 

Divisor is  $99 \div 15$ 

Divisor is  $99 \div 15$ 

Divisor is  $99 \div 15$ 

Dividend is  $99 \div 15$ 

Divisor is  $99 \div 15$ 

Remainder is  $99 \div 15$ 

Divisor is  $99 \div 15$ 

Remainder is  $99 \div 15$ 

Divisor is  $99 \div 15$ 

Remainder is  $99 \div 15$ 

Divisor is  $99 \div 15$ 

Remainder is  $99 \div 15$ 

5. Kayla is going to rent some movies for a slumber party. Each movie rental costs \$3 per night. If Kayla has \$29 to spend, how many movies can she rent?



| TEXAS                                   | Mathworks              |
|-----------------------------------------|------------------------|
| 0.0000000000000000000000000000000000000 | TARKETH AM IN 18 18 20 |

### MATH EXPLORATIONS Part 1

| SUMMARY (What I | learned in this sec | ction) |  |
|-----------------|---------------------|--------|--|
|                 |                     |        |  |
|                 |                     |        |  |
|                 |                     |        |  |
|                 |                     |        |  |
|                 |                     |        |  |