MODELING PROBLEMS ALGEBRAICALLY

3

Name:_____ Date:____ Period:____

SECTION 3.2 EQUATIONS

VOCABULARY

DEFINITION	EXAMPLE
Equation: A math sentence using the equal Sign to state that 2 expressions represent the same number	x = 2y - 3 $3 = m$

Big Idea: How do we translate equations into words? How do we translate word problems into equations?

EXPLORING QUESTION

What makes an equation different from an expression?

An expression describes a phrase mathematically.
An equation describes a sentence comparing two expressions

EXAMPLE 1

Translate the sentence "A number is 3 more than 7" into an equation.

$$N = 7 + 3$$

PROBLEM 1

Translate the sentences below, where x is a number.

a. x less than 10 equals 8.

b. 10 less than a number is 8.

EXAMPLE 2

Translate the following sentence into an equation: What number is twice as large as six?

PROBLEM 2

Translate each number sentence below into an equation using a variable for the unknown number. Determine the value of the variable.

a. The product of 4 and a number is 64. 4n = 64 n = 16

b. A number times 7 is 49. 7x = 49

$$y = 7$$

CHARTING THE PROCESS

EXAMPLE 3

We have seen how we can use numbers and variables to translate problems into equations. Consider the problem, "Jeremy is 9 years old. In how many years will Jeremy be 15 years old?"

How might you begin this problem? Did you define a variable? If so, how did you use this variable?

Here is a step-by-step approach. Do your steps resemble the following?

Step 1: Define your variable

X= years to reach 15 years old

Step 2: Translate the problem into an equation

Step 3: Solve for the unknown variable

$$9+x-9=15-9$$

 $0+x=6$
 $x=6$

Step 4: Check your answer

EXAMPLE 4

Translate the sentence "A number is 2 less than four times 10" into an equation and solve for the unknown variable. Does your answer make sense?

SOLUTION

Step 1:

n is the number described above.

Step 2:

n = 4.10 - 2

Step 3: N = 40 - 2N = 38

Step 4:

38 is 2 less than 4 times 10. 38 is 2 less than 40.

PROBLEM 3

Translate and solve each number sentence below.

a. Four greater than 3 times a number is 19.

check: 3(5)+4=

b. Half of 36 minus 6 is a number.

$$\frac{1}{2}(36)-6=n$$
 $18-6=n$
 $12=n$

check: $\frac{1}{2}(36) - 6 = 12$

PROBLEM 4

Jacob has \$73. How much more does he need if he wants to have \$98?

m = money he needs to get to \$98 check: 73+25= 73 +m = 98 73-73+m=98-73 0 tm = 98-37 m=\$25

PRACTICE EXERCISES

Translate each of these into an equation.

1. A number increased by nine is fifteen.

2. Seven greater than a number is twelve.

$$n + 7 = 12$$

3. Five more than a number is twenty.

$$n + 5 = 20$$

4. The sum of eight and a number is seventeen.

5. Two more than a number is thirteen.

6. Ten less than a number is eight.

7. The product of four and a number is sixty-four. 4(g) = 648. A number times eight is forty-eight. c(8) = 48

9. Half of thirty-six minus six is a number.
$$36 \div 2 - 6 = n$$
 or $\frac{1}{2}(36) - 6 = n$

10. The difference between two times a number and six is fourteen.

11. Six times a number is equal to the product of three and eight.

12. A number increased by 7 is 24.

13. Five greater than a number is 18.

14. Six more than a number is fourteen.

15. The sum of three and a number is twenty.

16. Three more than a number is twenty-one.

17. Six less than a number is eight.

18. The product of six and a number is forty-two.

19. A number times eight is forty-eight.

20. Four less than two times a number is 10.

	and and and and and a
SUMMARY (What I learned today)	