SECTION 2.2 FUNCTIONS AND THEIR GRAPHS

Date: _____ Period:____ Name:

Vocabulary

DEFINITION	EXAMPLE
Linear Function	0// 0 3
functions whose graphs are straight lines	f(x) = 2x - 3
John	
Graph of a Function All of the ordered paid (x.v.)	
Motted on a Cartesian plane de 1971	111 11/
Graph of a Function All of the ordered pairs (x,y) plotted on a Cartesian plane, where y=f(x)	*
V	A

EXPLORATION 1

For each of the following points determine which Quadrant they are in. Then plot the ordered pairs on a coordinate plane.

- a. (2,5) **T**
- d. (5,-2) IV h. (0,-3) y-axis e. (-2,-5) III i. (3,0) x-axis f. (0,3) y-axis j. (-3,0) x-axis
- b. (5, 2) **J**

- c. (-2,5)**T**

EXPLORATION 2

Make a table of 8 input-output pairs for each of the following functions. Plot these ordered pairs as points on a coordinate plane using graph paper. Guess how all the other points that satisfy the rule for f would be plotted. Lightly sketch in the rest of the graph of each function.

1.

- CO (10)	No. of Concession, Name of Street, or other Persons, Name of Street, or ot	£()	_	-

-3	-9	
-2	-7	
-1	-5	
0	- 3	
1	- 1	
2	1	

2.

x	J(x) = 4 - x	L
-3	7	
-2	6	
-1	5	
0	4	
1	3	
2	2	

Answer will vary slightly.

3.

\boldsymbol{x}	$f(x) = x^2$
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9
4	16

Graph may be wrong at first.

EXAMPLE 1

What is the rule for the function with f(2) = 5 and f(4) = 7 which has a straight line as its graph?

Input = x	Output = f(x)
-4	-1
-3	0
-2	1
-1	2
0	3
1	4
2	5
3	6
4	7
5	8
6	9
7	10
x	x + 3

EXAMPLE 2

What is the formula of the function f that has the following input-output pairs and has a graph of a straight line?

PROBLEM 2

Consider the graph below of y = f(x):

Answers will vary slightly.

\boldsymbol{x}	f(x)
- 3	-6
-2	-4
-1	-2
0	0
(2
2	4
3	6
×	2x

1. Identify 5 points on this graph.

$$(-3,-6)$$
; $(-2,-4)$; $(-1,-2)$; $(0,0)$; $(1,2)$; $(2,4)$; $(3,6)$

2. How could the graph be changed to make it easier to locate your points?

3. How much does the output y change when the input x increases by 1?

4. Using this fact, what is the rule or formula for the function?

$$f(x) = 2x$$

EXAMPLE 3

Plot the two points (1,3) and (4,9) on a coordinate plane and draw a straight line through them. Identify other points on the graph. Can you find the rule of the function with this as its graph?

Solution

x	y	Pattern	Connection to input
0	1	1	1+2(0)
1	3	1+2	1+2(1)
2	5	1+2+2	1+2(2)
3	7	+2+2+2	1+2(3)
4	9	1+2+2+2+2	1+2(4)

Domain and Range on the Graph

EXAMPLE 4

The graph of f(x) is shown below. Use the graph to determine the domain and range of f(x). Represent them using set notation.

PROBLEM 3

For each of the graphs use set notation to describe the domain and range.

Is it a Function?

Not all graphs represent functions. In a function each input is only assigned to one output, but different inputs can be assigned to the same output. Now we explore what this means for the graph of a function.

EXPLORATION 3

Look at the two graphs above. One is a function and one is not.

1. For the graph on the left, when x=1 what is the value of y? Is there more than one value of y assigned to x=1?

2. For the graph on the right, when x=1 what is the value of y? Is there more than one value of y assigned to x=1?

3. Make a table of 6 ordered pairs for each graph. Did you repeat any of the input values? Why is this important in determining if the graph represents a function?

SUMMARY (What I learned today)					

