SECTION 2.4 APPLICATIONS AND FUNCTIONS

Name: Date: Period:

Vocabulary

<u>DEFINITION</u>			EXAMPLE
Onit Rate	ratio where	the denominator	40 miles per / hour
	15		40miles Thour

What is a unit rate? In the following exploration, we will connect these ideas to functions.

EXPLORATION 1

Individually, make a list of 5 rates that you might hear or read about. In groups, share your list. Each group should choose 4 unit rates. For each unit rate: miles per hour, meters per second, miles per gallon, pounds per inch, dollars for an item sold, etc.

1. Define an independent variable (the input).

- 2. Define the dependent variable (the output).
- 3. Name the function and find a rule for the function.
- 4. What is the set of inputs (domain) and the set of outputs (range)?
- 5. Sketch a graph of each function. You may use a graphing calculator to check these graphs. Should you put these graphs on the same coordinate system? Why?

Answers will vary.

Ex: 1) hours driven 2) miles travelled

- 3) M(h)=50h
- 4) domain: non-negative numbers range: non-negative numbers

EXAMPLE 1

Mary receives her first music DVDs when her brother gives her 14 of them at the beginning of summer. From then on, at the end of each week, she buys 3 more DVDs. When will she have 50 DVDs in her collection?

Solution We denote the function describing the number of DVDs Mary has after x weeks with N(x). In the beginning, when no weeks have passed, she starts with 14. Making a table of inputs and outputs, we get

Week	# of DVDs
x	N(x)
0	14
1	17 = 14 + 3
2	20 = 14 + 3 + 3 = 14 + 2.3
3	23 = 14 + 3 · 3
4	26 = 14 + 4.3
x	N(x) = 14 + 3x

Now we need to find the number of weeks \boldsymbol{x} it takes Mary to have 50 DVDs.

$$N(x) = 50$$

 $14 + 3x = 50$
 $14 + 3x - 14 = 50 - 14$
 $3x = 36$
 $3x = 36$

EXAMPLE 2

Jack sells caps for \$12 per cap and Bethany sells T-shirts for \$16 per shirt. H(x) = cost of x hat T(x) = cost of x T-shirts

1. If a soccer coach has \$576 to spend on her team, how many caps could she buy? H(x) = 12xH(x) = 12x 576 = 12x 576 = 12x 48 = x She can buy 50576 = 12x 48 = x 48 = x 48 = x 56 = x 48 = x x = x

2. How many T-shirts could she buy?

$$T(x) = 16x$$
 $\frac{576}{16} = \frac{16x}{16}$ $x = 36$ She can buy 36 T -shirts.

3. How would your answers change if the coach had \$588 to spend?

H(x)=12x T(x)=16x $\frac{588 = 16 \times}{16} \times = 36.75$ (can't buy a partial shirt)

EXAMPLE 3

Jack is participating in School Walk for Diabetes to raise money for the American Diabetes Association (ADA). He raises \$1.60 for each mile he walks.

Jack has raised \$50 for ADA. How many miles did he need to walk for this?

1. Write a function that relates the number of miles he walks with the total amount of money he raises in his walk. f(x) = (1.6)x

2. Represent the function as ordered pairs.

S	· .		
	x	f(x)	
	1	1.60	
	2	3.20	
	3	4.80	
	4	6.40	
	į	:	
	X	1.6 ×	

- 3. Graph the function.
- 4. What is the domain? What is the range? domain is all non-negatives range is all non-negatives

SUMMARY (What I learned today)