SECTION 3.3 Slope and Proportions

Date: _____ Period:____

Vocabulary

DEFINITION	EXAMPLE
Proportional Relationship The ratio is always the	ч
Proportional Relationship The ratio is always the same. Also called direct variation.	y = m or y=mx
The graph is a line through the origin. Constant of Proportionality	m is the constant ratio
Constant of Proportionality	
The constant ratio between two variables	y= 3×
(slope of the line of the graph of a	个
proportional relationship.)	
EYPLOPATION 1	

EXPLORATION 1

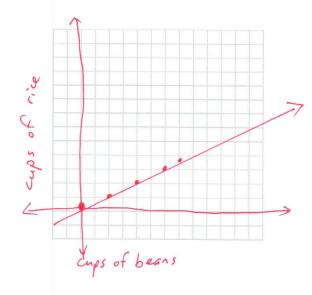
A restaurant makes and sells a famous dish that contains rice and beans. The ratio of rice to beans in its secret recipe is 1:2, and the ratio of beans to rice is 2:1.

Beans(cups)	Rice (cups)	
x	y	$\frac{y}{x}$
2	1	1/2
Н	2	= - 1
6	3	$\frac{3}{6} = \frac{1}{2}$
7	3.5	$\frac{3.5}{7} = \frac{1}{2}$

- 1. Fill in the table of possible amounts of rice and beans that the chef uses to make the dish.
- 2. For each (x,y) pair compute the ratio of $\frac{y}{x}$. What do you notice about this ratio?

It is the same for each pair.

Use the numbers in the table as coordinates of points. Make a graph using the data points. For each point, the number of cups of beans is the x-coordinate and the number of cups of rice is the y-coordinate. Describe the graph.



A line passing through the origin with slope m= 1

4. Write the equation of the line through the points.

What is relationship between slope of the line and the ratio from part 2.

- 6. Use the equation of the line to find:
 - If we want to use 13 cups of beans, how many cups of rice do we need?

$$y = \frac{1}{2}(13)$$
 $y = 6.5$ 6.5 cups of rice

b. If we want to us 10 cups of rice, how many cups of beans do we need?

10 =
$$\frac{1}{2}$$
 × 10.2 = $\frac{1}{2}$.2 × $\frac{20}{20}$ = x of beans

c. If we want to use 15 cups of rice and beans altogether, how many cups of beans do we need?
$$x + y = 15$$

so $15 - x = \frac{1}{2}x$
 $2(15 - x) = \frac{1}{2} \cdot 2 \cdot x$
 $30 = 3x$
 $10 = x$

y=15-(10)=5 7. Explain how you could use the graph to answer 6a and 6b. 6a: look where x=13, see that y is 6.5.

PROBLEM 1

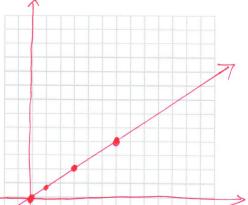
Consider a basic recipe for vinaigrette which is 3 parts oil to 2 parts vinegar.

1. Make a table of amounts of oil (x) and vinegar (y) in tablespoons.

1	Oil	Vinegar	
1	x	y	$\frac{y}{x}$
	3	2	2/3
	6	4	6:3
1	0	0	can't divide by O.
		2/3	= = = = = = = = = = = = = = = = = = = =

2. Compute the ratio of $\frac{y}{x}$ for each pair in your table.

3. Graph the ordered pairs in your table.

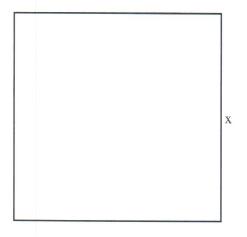


4. Write the equation of the line through the points.

$$y = \frac{2}{3} \times$$

5. What is the relationship between the slope and ratio from part 2?

EXAMPLE 1



Let y = perimeter of the square.

1. Write an equation for the perimeter of the square in terms of x.

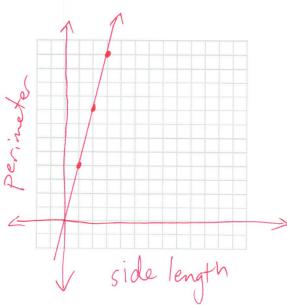
2. For a square, is the relationship between the perimeter and the length of a side proportional?

3. Make a graph of the perimeter versus the length of a side. Does the graph cross at the origin? Explain why this makes sense.

yes, y = 4(0) = 0yes, y = 4(0) = 0so when x = 0, y = 0.

4. If we double the length of the sides, how does this affect the perimeter? What if we triple the length of sides? Draw a sketch to justify your answer.

f(2x) = 4(2x) f(2x) = 8x, which is double the original perineter.

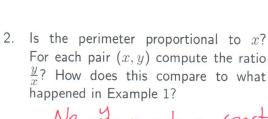


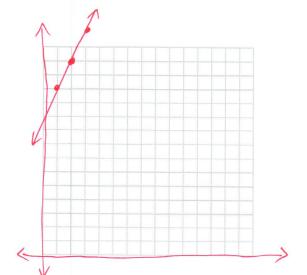
EXPLORATION 2

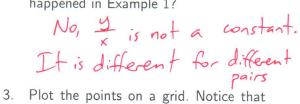
Let y be the perimeter of the rectangle shown below.

length	perimeter	
x	y	$\frac{y}{x}$
2	14	14 = 72
3	16	16
4	18	$\frac{18}{4} = \frac{9}{2}$
8	26	$\frac{26}{8} = \frac{13}{4}$
5	20	20 = 4
1	12	

1. Make a table of possible values of x and the corresponding perimeter y.







the points fall along a line. Draw the line. Does the line pass through the origin? Explain why this makes sense.

No. It is linear but not a proportional relationship.

4. What happens to the perimeter if we double the length but leave the width the same? The rectangles shown have width 5. One has length 8 and the other length 16. Determine the perimeter for each rectangle. Did the perimeter double?

Let's summarize some key results about proportional relationships:

- 1. The graph of the relationship is a line that passes through the origin.
- 2. The slope of the line is equal to the constant ratio between the two variables. Sometimes this is called the *constant of proportionality*.
- 3. If one variable is multiplied by a scale factor, the other variable is multiplied by the same scale factor.

EXPLORATION 3

Think of different contexts from your previous math classes or from your experience outside of school. Identify 5 relationships that are proportional.

Answers will vary.

Scaling in geometry, miles pergallon, doubling (o-changing)
a recipe, sales tax, cost per pound, etc.

PROBLEM 2

Graph each of the following equations. Then determine if the relationship is proportional or not. Explain.

$$1. \quad y = 2x$$

2.
$$y = \frac{2}{3}x$$

3.
$$y = x^2$$

2.

4.
$$y = 2x + 3$$

yes, linear & passes through the origin.

3.

No, not linear

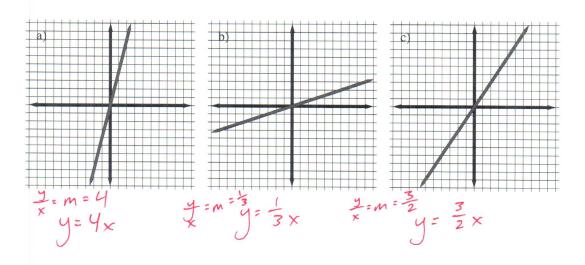
4.

yes, linear & passes through origin.

No, does not pass through the origin.

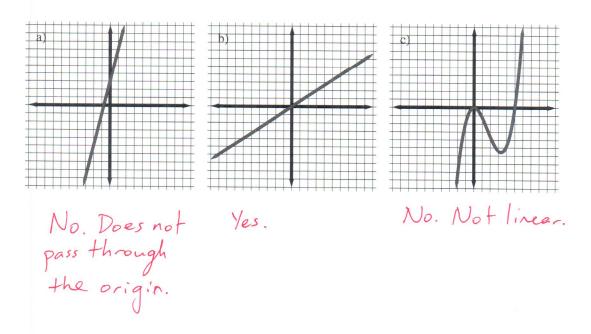
PROBLEM 3

Explain why all the graphs below represent proportional relationships. For each graph, determine the slope and write the equation of the line.



PROBLEM 4

For each of the graphs below determine if the graph represents a proportional relationship or not.



SUMMARY (What I learned today)					