| Correlations to the Texas I | Essential Knowledge and Skills (TEKS): Teacher Material | | |-----------------------------|--|----| | Subject | Chapter 111. Mathematics | In | | Subchapter | Subchapter B. Middle School | R | | Course | §111.26. Math, Grade 8, Beginning with School Year 2014-2015 | А | | Publisher | Texas State University - San Marcos | А | | Program Title | Mathworks Math Explorations - Algebra I | (1 | | Program ISBN | 978-1-938858-08-6 | | Instruction Review Activity Assessment (Drop-down menu) ## (a) Introduction. - (1) The desire to achieve educational excellence is the driving force behind the Texas essential knowledge and skills for mathematics, guided by the college and career readiness standards. By embedding statistics, probability, and finance, while focusing on computational thinking, mathematical fluency, and solid understanding, Texas will lead the way in mathematics education and prepare all Texas students for the challenges they will face in the 21st century. - (2) The process standards describe ways in which students are expected to engage in the content. The placement of the process standards at the beginning of the knowledge and skills listed for each grade and course is intentional. The process standards weave the other knowledge and skills together so that students may be successful problem solvers and use mathematics efficiently and effectively in daily life. The process standards are integrated at every grade level and course. When possible, students will use play mathematics in everyday life, society, and the workplace. Students will use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution. Students will select appropriate tools such as real objects, manipulatives, algorithms, paper and pencil, and technology and techniques such as mental math, estimation, number sense, and generalization and abstraction to solve problems. Students will effectively communicate mathematical ideas, reasoning, and their implications using multiple representations such as symbols, diagrams, graphs, computer programs, and language. Students will solve mathematical relationships to generate solutions and make connections and predictions. Students will analyze mathematical relationships to connect and communicate mathematical ideas, reasoning it will will or communication. - (3) The primary focal areas in Grade 6 are number and operations; proportionality; expressions, equations, and relationships; and measurement and data. Students use concepts, algorithms, and properties of rational numbers to explore mathematical relationships and to describe increasingly complex situations. Students use concepts of proportionality to explore, develop, and communicate mathematical relationships. Students use algebraic thinking to describe how a change in one quantity in a relationship in results in a change in the other verbal, numeric, graphic, and symbolic representations of relationships, including equations and inequalities. Students use geometric properties and relationships, as well as spatial reasoning, to model and analyze situations and solve problems. Students communicate information about geometric figures or situations by quantifying attributes, generative procedures from measurement experiences, and use the problems. Students use appropriate statistics, representations of data, and reasoning to draw conclusions, evaluate arguments, and make recommendations. While the use of all types of technology is important, the emphasis on algebra readiness skills necessitates the implementation of graphing technology. - (4) Statements that contain the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples. ## (b) Knowledge and skills | Knowledge and Skills Statement | Student Expectation | Breakout | Citation Type | Component ISBN | Page (s) | Specific Location | |---|---|---|----------------------------|--|------------|--| | (1) Mathematical process standards. The
student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | (A) apply mathematics to problems arising in everyday life, society, and the workplace | (i) apply mathematics to
problems arising in everyday
life | | | | | | | A
A
A | | Instruction
Instruction | 978-1-938858-08-6
978-1-938858-08-6 | 493
513 | Exploration 1 in Section 9.1
Problem 2 in Section 9.3 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (A) apply mathematics to problems arising in everyday life, society, and the workplace | (ii) apply mathematics to problems arising in society | | | | | | , • , • , • , • , • , • , • , • , • , • | A | ii | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 509
510 | Problem 1 in Section 9.2 Exercise 1 in Section 9.2 | | | | | Instruction | 978-1-938858-08-6 | 340 | Example 6 in Section 6.3 | | (1) Mathematical process standards. The
student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | (A) apply mathematics to problems arising in everyday life, society, and the workplace | (iii) apply mathematics to
problems arising in the
workplace | | | | | | | 2:::::::::::::::::::::::::::::::::::::: | # | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 311
315 | Example 4 in Section 5.3 Exercise 3 in Section 5.3 | | | A | | | | | | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (B) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution | (i) use a problem-solving
model that incorporates
analyzing given information,
formulating a plan or strategy,
determining a solution,
justifying the solution, and
evaluating the problem-solving
process | | | | | | | В. | | Instruction | 978-1-938858-08-6 | 212 | Example 3 in Section 3.6 | | | В | | Assessment | 978-1-938858-08-6 | 217 | Exercise 8 in Section 3.6 | | | B | | | | | | | (1) Mathematical process standards. The student uses mathematical processes to | (B) use a problem-solving model that incorporates | (ii) use a problem-solving model that incorporates | | | | | | acquire and demonstrate mathematical | analyzing given information, | analyzing given information, | | | | | | understanding. The student is expected to: | formulating a plan or strategy,
determining a solution, | formulating a plan or strategy,
determining a solution, | | | | | | | justifying the solution, and
evaluating the problem-solving
process and the
reasonableness of the solution | justifying the solution, and
evaluating the reasonableness
of the solution | | | | | | | | | | | | | | | В | | Instruction | 978-1-938858-08-6 | 212 | Example 3 in Section 3.6 | | 4444444444444444444 | 8 | | Assessment | 978-1-938858-08-6 | 217 | Exercise 8 in Section 3.6 | | ::::::::::::::::::::::::::::::::::::: | 8 | * | } | } | | | | <u> </u> | | | l | 1 | L | .i | | (1) Mathematical process standards. The | (C) select tools, including real | (i) select tools, including real | | | | | |---|---|--|--|---|--------------------------|--| | student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | objects, manipulatives, paper
and pencil, and technology as
appropriate, and techniques,
including mental math,
estimation, and number sense
as appropriate, to solve | objects as appropriate, to
solve problems | | | | | | | problems | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 72
80 | Exploration 4 in Section 1.7 Exercise 16 in Section 1.7 | | | | | Assessment | 978-1-938858-08-6 | 68 | Exercise 6 in Section 1.6 | | (1) Mathematical process standards. The student uses
mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems | (ii) select tools, including
manipulatives as appropriate,
to solve problems | | | | | | | | | Instruction Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 378
382
526 | Exploration 1 in Section 7.2 Exercise 1 in Section 7.2 Exercise 10 in Section 10.1 | | Mathematical process standards. The
student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | (C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems | (iii) select tools, including paper and pencil as appropriate, to solve problems | | | | | | | } | | Instruction
Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 12
12
19 | Exploration 1 in Section 1.2 Exploration 2 in Section 1.2 Exercise 2 in Section 1.2 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems | (iv) select tools, including technology as appropriate, to solve problems | Assessment | 978-1-938858-08-6 | 19 | Exercise 3 in Section 1.2 | | | | iv
NV | Instruction Assessment Instruction Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 499
504
658
666 | Example 1 in Section 9.1 Exercise 4 in Section 9.1 Exploration 3 in Section 13.2 Exercise 4 in Section 13.2 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems | (v) select techniques, including
mental math as appropriate, to
solve problems | | | | | | | | × | Instruction Instruction Assessment Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 44
56
60
60 | Exploration 1 in Section 1.5 Exploration 6 in Section 1.5 Exercise 10 in Section 1.5 Exercise 11 in Section 1.5 Exercise 12 in Section 1.5 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems | (vi) select techniques,
including estimation as
appropriate, to solve problems | | | | | | | | vi
vi
vi | Instruction Assessment Instruction Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 56
60
340
351 | Exploration 6 in Section 1.5 Exercise 10 in Section 1.5 Example 6 in Section 6.3 Exercise 8 in Section 6.3 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems | (vii) select techniques,
including number sense as
appropriate, to solve problems | | | | | | | | vli
vii
vii | Instruction
Assessment
Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 56
60
60 | Exploration 6 in Section 1.5
Exercise 10 in Section 1.5
Exercise 11 in Section 1.5 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (D) communicate
mathematical ideas,
reasoning, and their
implications using multiple
representations, including
symbols, diagrams, graphs,
and language as appropriate | (i) communicate mathematical
ideas using multiple
representations, including
symbols as appropriate | | | | | | | and ranguage as appropriate) | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 45
58 | Exploration 2 in Section 1.5 Exercise 1 in Section 1.5 | | | | | | | | | | (1) Mathematical process standards. The | (D) communicate | (ii) communicate mathematical | | | | | |--|---|--|---------------------------|--|------------|---| | student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | mathematical ideas,
reasoning, and their
implications using multiple
representations, including | ideas using multiple
representations, including
diagrams as appropriate | | | | | | | symbols, diagrams, graphs,
and language as appropriate | | | | | | | | D | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 4
10 | Example 1 in Section 1.1
Exercise 6 in Section 1.1 | | | 9 | | | | | | | (1) Mathematical process standards. The student uses mathematical processes to | (D) communicate
mathematical ideas, | (iii) communicate mathematical ideas using multiple | | | | | | acquire and demonstrate mathematical understanding. The student is expected to: | reasoning, and their
implications using multiple
representations, including
symbols, diagrams, graphs, | representations, including
graphs as appropriate | | | | | | | and language as appropriate
D | | Instruction | 978-1-938858-08-6 | 138 | Problem 1 in Section 3.1 | | | D | (III) | Assessment
Instruction | 978-1-938858-08-6
978-1-938858-08-6 | 552
138 | Exercise 12 in Section 10.3 Problem 1 in Section 3.1 | | (1) Mathematical process standards. The
student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | (D) communicate
mathematical ideas,
reasoning, and their
implications using multiple
representations, including
symbols, diagrams, graphs, | (iv) communicate
mathematical ideas using
multiple representations,
including language as
appropriate | | | | | | | and language as appropriate | v | Instruction | 978-1-938858-08-6 | 198 | Example 2 in Section 3.5 | | | g | 194 | Assessment | 978-1-938858-08-6 | 205 | Exercise 16 in Section 3.5 | | (1) Mathematical process standards. The | (D) communicate | (v) communicate mathematical | | | | | | student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | mathematical ideas,
reasoning, and their
implications using multiple
representations, including
symbols, diagrams, graphs, | reasoning using multiple
representations, including
symbols as appropriate | | | | | | | and language as appropriate | y | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 284
289 | Exploration 4 in Section 5.1 Exercise 3 in Section 5.1 | | | å | V | Assessment | 370-1-330030-00-0 | 205 | LACIOSE 3 III SECTION 3.1 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (D) communicate
mathematical ideas,
reasoning, and their
implications using multiple
representations, including
symbols, diagrams, graphs, | (vi) communicate
mathematical reasoning using
multiple representations,
including diagrams as
appropriate | | | | | | | and language as appropriate
Q | W | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 519
525 | Exploration 3 in Section 10.1
Exercise 5 in Section 10.1 | | | о
О | M | | | | | | (1) Mathematical process standards. The
student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | (D) communicate
mathematical ideas,
reasoning, and their
implications using multiple
representations, including
symbols, diagrams, graphs, | (vii) communicate
mathematical reasoning using
multiple representations,
including graphs as
appropriate | | | | | | | and language as appropriate Q D D D | (4) | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 302
315 | Exploration 1 in Section 5.3 Exercise 3 in Section 5.3 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (D) communicate
mathematical ideas,
reasoning, and their
implications using multiple
representations, including
symbols, diagrams,
graphs, | (viii) communicate
mathematical reasoning using
multiple representations,
including language as
appropriate | | | | | | | and language as appropriate D | Viii | Instruction | 978-1-938858-08-6
978-1-938858-08-6 | 28 | Example 4 in Section 1.3 | | | ŭ | rem
John | Assessment | 310-1-338036-08-6 | 32 | Exercise 14 in Section 1.3 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (D) communicate
mathematical ideas,
reasoning, and their
implications using multiple
representations, including | (ix) communicate
[mathematical ideas']
implications using multiple
representations, including
symbols as appropriate | | | | | | | symbols, diagrams, graphs,
and language as appropriate
D | 13# 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | Instruction | 978-1-938858-08-6 | 535 | Problem 3 in Section 10.2 | | | D | jos
jos
jos | Assessment
Instruction | 978-1-938858-08-6
978-1-938858-08-6 | 537
532 | Exercise 3 in Section 10.2 Exploration 3 in Section 10.2 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (D) communicate
mathematical ideas,
reasoning, and their
implications using multiple
representations, including
symbols, diagrams, graphs | (x) communicate
[mathematical ideas']
implications using multiple
representations, including
diagrams as appropriate | | | | | | Kanananan mengangangan anan an | symbols, diagrams, graphs,
and language as appropriate | * ; = ; = ; = ; = ; = ; = ; = ; = ; | Instruction | 978-1-938858-08-6 | 520 | Exploration 4 in Section 10.1 | | | | | Assessment | 978-1-938858-08-6 | 10 | Exercise 6 in Section 1.1 | | (1) Mathematical process standards. The | (D) communicate | (xi) communicate | | | | | | (1) wathermatical process standards. The
student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | (D) communicate
mathematical ideas,
reasoning, and their
implications using multiple
representations, including
symbols, diagrams, graphs, | (xi) communicate [mathematical ideas*] implications using multiple representations, including graphs as appropriate | | | | | | | and language as appropriate
D | *************************************** | Instruction | 978-1-938858-08-6 | 148 | Exploration 3 in Section 3.2 | | | 7 | 56 | Assessment Assessment Instruction | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 162
351
340 | Exercise 8 in Section 3.2 Exercise 8 in Section 6.3 Example 6 in Section 6.3 | |---|--|---|---|---|-------------------|--| | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (D) communicate
mathematical ideas,
reasoning, and their
implications using multiple | (xii) communicate
[mathematical ideas']
implications using multiple
representations, including | | | | | | | representations, including symbols, diagrams, graphs, and language as appropriate | language as appropriate
ফা | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 448
454 | Exploration 2 in Section 8.2 Exercise 3 in Section 8.2 | | (1) Mathematical process standards. The | (D) communicate | жіі жіі (хііі) communicate | | | | | | (1) Madenialacin process acinadus. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | mathematical ideas,
reasoning, and their
implications using multiple
representations, including
symbols, diagrams, graphs,
and language as appropriate | (mathematical reasoning's)
implications using multiple
representations, including
symbols as appropriate | | | | | | | | 2001 | Instruction Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 56
60
60 | Exploration 6 in Section 1.5 Exercise 11 in Section 1.5 Exercise 11 in Section 1.5 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (D) communicate
mathematical ideas,
reasoning, and their
implications using multiple
representations, including
symbols, diagrams, graphs,
and language as appropriate | (xiv) communicate
[mathematical reasoning's]
implications using multiple
representations, including
diagrams as appropriate | | | | | | | | 987 | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 519
526 | Exploration 3 in Section 10.1
Exercise 10 in Section 10.1 | | (1) Mathematical process standards. The
student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | (D) communicate
mathematical ideas,
reasoning, and their
implications using multiple
representations, including
symbols, diagrams, graphs, | (xv) communicate
[mathematical reasoning's]
implications using multiple
representations, including
graphs as appropriate | | | | | | 7-2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3- | and language as appropriate) | xx [- [-] -] - [- [- [- [-] - | Instruction | 978-1-938858-08-6 | 148 | Exploration 3 in Section 3.2 | | | | xV | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 149
162 | Problem 3 in Section 3.2
Exercise 10 in Section 3.2 | | · . · . · . · . · . · . · . · . · . · . | 3 | by . | Assessment | 978-1-938858-08-6 | 163 | Exercise 10 in Section 3.2 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (D) communicate
mathematical ideas,
reasoning, and their
implications using multiple
representations, including
symbols, diagrams, graphs,
and language as appropriate | (xvi) communicate
[mathematical reasoning's]
implications using multiple
representations, including
language as appropriate | | | | | | | and language as appropriate | xxi | Instruction | 978-1-938858-08-6 | 149 | Exploration 4 in Section 3.2 | | | | (XV)
(XV)
(XV) | Assessment
Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 163
138
142 | Exercise 12 in Section 3.2 Exploration 2 in Section 3.1 Exercise 7 in Section 3.1 | | Mathematical process standards. The
student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | (E) create and use
representations to organize,
record, and communicate
mathematical ideas | (i) create representations to
organize mathematical ideas | | | | | | | | | Instruction
Instruction | 978-1-938858-08-6
978-1-938858-08-6 | 13
679 | Problem 1 in Section 1.2
Exploration 1 in Section 14.1 | | | | | Assessment | 978-1-938858-08-6 | 687 | Exercise 7 in Section 14.1 | | Mathematical process standards. The
student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | (E) create and use
representations to organize,
record, and communicate
mathematical ideas | (ii) use representations to
organize mathematical ideas | | | | | | | | | Instruction
Instruction | 978-1-938858-08-6
978-1-938858-08-6 | 12
87 | Exploration 2 in Section 1.2
Example 1 in Section 2.1 | | · · · · · · · · · · · · · · · · · · · | | | Instruction | 978-1-938858-08-6 | 107 | Example 2 in Section 2.2
Exercise 2 in Section 1.2 | | | | | Assessment
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 19
59 | Exercise 9 in Section 1.5 | | | | ii | Assessment
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 97
114 | Exercise 7 in Section 2.1 Exercise 5 in Section 2.2 | | Mathematical process standards. The
student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | (E) create and use
representations to organize,
record, and communicate
mathematical ideas | (iii) create representations to record mathematical ideas | | | | | | | | | Instruction | 978-1-938858-08-6 | 119 | Exploration 1 in Section 2.3 | | | | #
11 | Assessment
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 124
68 | Exercise 9 in Section 2.3 Exercise 6 in Section 1.6 | | Mathematical process standards. The
student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | (E) create and use representations to organize, record, and communicate mathematical ideas | (iv) use representations to
record mathematical ideas | | | | | | | 2 | (M) | Instruction Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 146
160
68 | Exploration 1 in Section 3.2 Exercise 1 in Section 3.2 Exercise 6 in Section 1.6 | | | لمنمندندندندندندند | ; | | | | · · | | Mathematical process standards. The
student uses mathematical processes
to
acquire and demonstrate mathematical
understanding. The student is expected to: | (E) create and use
representations to organize,
record, and communicate
mathematical ideas | (v) create representations to communicate mathematical ideas | | | | | | student uses mathematical processes to
acquire and demonstrate mathematical | representations to organize, record, and communicate | communicate mathematical | Assessment
Instruction | 978-1-938858-08-6
978-1-938858-08-6 | 21
23 | Exercise 10 in Section 1.2 Example 1 in Section 1.3 | | (1) Mathematical process standards. The
student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | (E) create and use representations to organize, record, and communicate mathematical ideas | (vi) use representations to communicate mathematical ideas | | | | | |---|---|---|---|---|-------------------------------|--| | | P
5
6
7 | vi
vi
vi | Instruction Assessment Assessment Instruction | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 157
162
21
54 | Example 3 in Section 3.2 Exercise 6 in Section 3.2 Exercise 10 in Section 1.2 Exploration 5 in Section 1.5 | | (1) Mathematical process standards. The
student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | (F) analyze mathematical
relationships to connect and
communicate mathematical
ideas | (i) analyze mathematical relationships to connect mathematical ideas | | | | | | | P | | Instruction
Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 194
262
252 | Exploration 1 in Section 3.5 Example 4 in Section 4.4 Exercise 3 in Section 4.3 | | (1) Mathematical process standards. The
student uses mathematical processes to
acquire and demonstrate mathematical
understanding. The student is expected to: | (F) analyze mathematical
relationships to connect and
communicate mathematical
ideas | (ii) analyze mathematical
relationships to communicate
mathematical ideas | | | | | | | F | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 333
343 | Exploration 1 in Section 6.3
Exercise 2 in Section 6.3 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication | (i) display mathematical ideas
using precise mathematical
language in written or oral
communication | | | | | | | ୍ର
ତ
ପ୍ର | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 24
9 | Exploration 1 in Section 1.3 Exercise 5 in Section 1.1 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication | (ii) display mathematical
arguments using precise
mathematical language in
written or oral communication | | | | | | | 0
G
0 | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 36
40 | Exploration 1 in Section 1.4 Exercise 1 in Section 1.4 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication | (iii) explain mathematical ideas
using precise mathematical
language in written or oral
communication | | | | | | | G | iri | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 39
40 | Example 3 in Section 1.4
Exercise 2 in Section 1.4 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (G) display, explain, and justify
mathematical ideas and
arguments using precise
mathematical language in
written or oral communication | (iv) explain mathematical
arguments using precise
mathematical language in
written or oral communication | | | | | | | G | iv
N | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 39
163 | Example 4 in Section 1.4
Exercise 12 in Section 3.2 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (G) display, explain, and justify
mathematical ideas and
arguments using precise
mathematical language in
written or oral communication | (v) justify mathematical ideas
using precise mathematical
language in written or oral
communication | | | | | | | G | v | Instruction
Assessment
Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 154
162
162 | Example 2 in Section 3.2 Exercise 8 in Section 3.2 Exercise 9 in Section 3.2 | | (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: | (G) display, explain, and justify
mathematical ideas and
arguments using precise
mathematical language in
written or oral communication | (vi) justify mathematical
arguments using precise
mathematical language in
written or oral communication | | | | | | | G
G
G
G | vi.
vi.
vi. | Instruction Instruction Instruction Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 5
578
580
583
583 | Exploration 4 in Section 1.1 Example 2 in Section 10.6 Example 3 in Section 10.6 Exercise 7 in Section 10.6 Exercise 7 in Section 10.6 Exercise 8 in Section 10.6 | | (2) Number and operations. The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to: | (A) extend previous knowledge of sets and subsets using a visual representation to describe relationships between sets of real numbers | | | | | | | | A | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 4
10 | Example 1 in Section 1.1 Exercise 6 in Section 1.1 | | (2) Number and operations. The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to: | (B) approximate the value of an irrational number, including π and square roots of numbers less than 225, and locate that rational number approximation on a number line | (i) approximate the value of an irrational number, including $\boldsymbol{\pi}$ | | | | | |---|--|--|--|---|---------------------------------|---| | | 3 | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 72
80 | Exploration 4 in Section 1.7 Exercise 16 in Section 1.7 | | (2) Number and operations. The student
applies mathematical process standards to
represent and use real numbers in a variety
of forms. The student is expected to: | (B) approximate the value of
an irrational number, including
π and square roots of numbers
less than 225, and locate that
rational number approximation
on a number line | (ii) approximate the value of an
irrational number, including
square roots of numbers less
than 225 | | | | | | | 3 | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 529
538 | Exploration 2 in Section 10.2
Exercise 5 in Section 10.2 | | (2) Number and operations. The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to: | (B) approximate the value of
an irrational number, including
π and square roots of numbers
less than 225, and locate that
rational number approximation
on a number line | (iii) locate that rational number
approximation on a number
line | | | | | | | <u> </u> | | Instruction Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 529
537
538 | Exploration 2 in Section 10.2 Exercise 1 in Section
10.2 Exercise 5 in Section 10.2 | | (2) Number and operations. The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to: | (C) convert between standard decimal notation and scientific notation | | | | | | | | 9 | | Instruction Instruction Instruction Instruction Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 359
359
361
361
362 | Problem 1 in Section 6.6 Problem 2 in Section 6.6 Problem 4 in Section 6.6 Problem 5 in Section 6.6 Exercise 1 in Section 6.6 | | (2) Number and operations. The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to: | (D) order a set of real
numbers arising from
mathematical and real-world
contexts | (i) order a set of real numbers
arising from mathematical
contexts | | | | | | | | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 531
539 | Example 1 in Section 10.2
Exercise 6 in Section 10.2 | | (2) Number and operations. The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to: | (D) order a set of real
numbers arising from
mathematical and real-world
contexts | (ii) order a set of real numbers
arising from real-world
contexts | | | | | | | ?
1 | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 532
539 | Exploration 3 in Section 10.2
Exercise 7 in Section 10.2 | | (3) Proportionality. The student applies mathematical process standards to use proportional relationships to describe dilations. The student is expected to: | (A) generalize that the ratio of
corresponding sides of similar
shapes are proportional,
including a shape and its
dilation | | | | | | | | | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 577
583 | Exploration 4 in Section 10.6
Exercise 4 in Section 10.6 | | (3) Proportionality. The student applies mathematical process standards to use proportional relationships to describe dilations. The student is expected to: | (B) compare and contrast the attributes of a shape and its dilation(s) on a coordinate plane | (i) compare the attributes of a
shape and its dilation(s) on a
coordinate plane | | | | | | | | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 572
583 | Exploration 1 in Section 10.6
Exercise 4 in Section 10.6 | | (3) Proportionality. The student applies mathematical process standards to use proportional relationships to describe dilations. The student is expected to: | (B) compare and contrast the attributes of a shape and its dilation(s) on a coordinate plane | (ii) contrast the attributes of a
shape and its dilation(s) on a
coordinate plane | | | | | | | | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 572
583 | Exploration 1 in Section 10.6
Exercise 4 in Section 10.6 | | Proportionality. The student applies mathematical process standards to use proportional relationships to describe dilations. The student is expected to: | (C) use an algebraic representation to explain the effect of a given positive rational scale factor applied to two-dimensional figures on a coordinate plane with the origin as the center of dilation | | | | | | | | | | Instruction
Instruction | 978-1-938858-08-6
978-1-938858-08-6 | 572
573 | Exploration 1 in Section 10.6 Exploration 2 in Section 10.6 | | (4) Proportionality. The student applies mathematical process standards to explain proportional and non-proportional relationships involving slope. The student is expected to: | (A) use similar right triangles to develop an understanding that slope, m, given as the rate comparing the change in y-values to the change in x-values, (y2 -y1) (x2 - x1), is the same for any two points (x1, y1) and (x2, y2) on the same line | | | | | | |--|--|---|--|---|-------------------|---| | | A | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 150
163 | Example 1 in Section 3.2
Exercise 13 in Section 3.2 | | (4) Proportionality. The student applies
mathematical process standards to explain
proportional and non-proportional
relationships involving slope. The student is
expected to: | (B) graph proportional relationships, interpreting the unit rate as the slope of the line that models the relationship | | | | | | | | 5
9 | | Instruction
Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 196
177
205 | Problem 3 in Section 3.5 Problem 2 in Section 3.4 Exercise 14 in Section 3.5 | | (4) Proportionality. The student applies
mathematical process standards to explain
proportional and non-proportional
relationships involving slope. The student is
expected to: | (C) use data from a table or
graph to determine the rate of
change or slope and y-
intercept in mathematical and
real-world problems | (i) use data from a table or
graph to determine the rate of
change or slope in
mathematical problems | | | | | | | 0 | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 113
172 | Exploration 3 in Section 2.2 Exercise 5 in Section 3.3 | | (4) Proportionality. The student applies
mathematical process standards to explain
proportional and non-proportional
relationships involving slope. The student is
expected to: | (C) use data from a table or
graph to determine the rate of
change or slope and y-
intercept in mathematical and
real-world problems | (ii) use data from a table or
graph to determine the rate of
change or slope in real-world
problems | | | | | | | G | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 164
171 | Exploration 1 in Section 3.3 Exercise 3 in Section 3.3 | | (4) Proportionality. The student applies
mathematical process standards to explain
proportional and non-proportional
relationships involving slope. The student is
expected to: | (C) use data from a table or
graph to determine the rate of
change or slope and y-
intercept in mathematical and
real-world problems | (iii) use data from a table or
graph to determine the y-
intercept in mathematical
problems | | | | | | | C | | Instruction
Assessment
Instruction | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 175
171
178 | Exploration 1 in Section 3.4 Exercise 3 in Section 3.3 Example 1 in Section 3.4 | | (4) Proportionality. The student applies
mathematical process standards to explain
proportional and non-proportional
relationships involving slope. The student is
expected to: | (C) use data from a table or
graph to determine the rate of
change or slope and y-
intercept in mathematical and
real-world problems | (iv) use data from a table or
graph to determine the y-
intercept in real-world
problems | | | | | | | 0
G
G
O | N
W
N
N | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 499
504 | Example 1 in Section 9.1 Exercise 5 in Section 9.1 | | (5) Proportionality. The student applies
mathematical process standards to use
proportional and non-proportional
relationships to develop foundational
concepts of functions. The student is
expected to: | (A) represent linear
proportional situations with
tables, graphs, and equations
in the form of y = kx | (i) represent linear proportional situations with tables | | | | | | | A | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 164
171 | Exploration 1 in Section 3.3 Exercise 4 in Section 3.3 | | (5) Proportionality. The student applies
mathematical process standards to use
proportional and non-proportional
relationships to develop foundational
concepts of functions. The student is
expected to: | (A) represent linear
proportional situations with
tables, graphs, and equations
in the form of y = kx | (ii) represent linear
proportional situations with
graphs | | | | | | | A | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 164
171 | Exploration 1 in Section 3.3
Exercise 3 in Section 3.3 | | (5) Proportionality. The student applies
mathematical process standards to use
proportional and non-proportional
relationships to develop foundational
concepts of functions. The student is
expected to: | (A) represent linear
proportional situations with
tables, graphs, and equations
in the form of y = kx | (iii) represent linear
proportional situations with
equations in the form of
y = kx | | | | | | | A | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 164
171 | Exploration 1 in Section 3.3 Exercise 4 in Section 3.3 | | (5) Proportionality. The student applies
mathematical process standards to use
proportional and non-proportional
relationships to develop foundational
concepts of functions. The student is
expected to: | (B) represent linear non-
proportional situations
with
tables, graphs, and equations
in the form of
y = mx + b, where b ≠ 0 | (i) represent linear non-
proportional situations with
tables | | | | | | | 8.
5 | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 167
205 | Exploration 2 in Section 3.3 Exercise 16 in Section 3.5 | | | B | | | | | | |--|--|--|---|--|--------------------------|---| | (5) Proportionality. The student applies
mathematical process standards to use
proportional and non-proportional
relationships to develop foundational
concepts of functions. The student is
expected to: | (B) represent linear non-
proportional situations with
tables, graphs, and equations
in the form of
y = mx + b, where b ≠ 0 | (ii) represent linear non-
proportional situations with
graphs | | | | | | | 6
B
B | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 167
205 | Exploration 2 in Section 3.3
Exercise 16 in Section 3.5 | | (5) Proportionality. The student applies mathematical process standards to use proportional and non-proportional relationships to develop foundational concepts of functions. The student is expected to: | (B) represent linear non-
proportional situations with
tables, graphs, and equations
in the form of
y = mx + b, where b ≠ 0 | (iii) represent linear non-
proportional situations with
equations in the form of
y = mx + b, where b ≠ 0 | | | | | | | 6
6
6
9 | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 201
203 | Example 4 in Section 3.5
Exercise 9 in Section 3.5 | | (5) Proportionality. The student applies mathematical process standards to use proportional and non-proportional relationships to develop foundational concepts of functions. The student is expected to: | (C) contrast bivariate sets of data that suggest a linear relationship with bivariate sets of data that do not suggest a linear relationship from a graphical representation | | | | | | | | G | | Instruction Assessment Instruction Assessment | 978-938858-02-4
978-938858-02-4
978-938858-02-4
978-938858-02-4 | 498
505
513
514 | Problem 1 in Section 9.1 Exploration 1 in Section 9.1 Problem 3 in Section 9.3 Problem 3 in Section 9.3 | | (5) Proportionality. The student applies
mathematical process standards to use
proportional and non-proportional
relationships to develop foundational
concepts of functions. The student is
expected to: | (D) use a trend line that
approximates the linear
relationship between bivariate
sets of data to make
predictions | | | | | | | | О
О
О | | Instruction
Assessment | 978-938858-02-4
978-938858-02-4 | 499
504 | Example 1 in Section 9.1 Exercise 5 in Section 9.1 | | (5) Proportionality. The student applies
mathematical process standards to use
proportional and non-proportional
relationships to develop foundational
concepts of functions. The student is
expected to: | (E) solve problems involving direct variation | | | | | | | | Ē | | Instruction
Assessment | | 630
634 | Example 1 in Section 12.2
Exercise 3 in Section 12.2 | | (5) Proportionality. The student applies mathematical process standards to use proportional and non-proportional relationships to develop foundational concepts of functions. The student is expected to: | (F) distinguish between proportional and non-proportional situations using tables, graphs, and equations in the form y = kx or y = mx + b, where b ≠ 0 | (i) distinguish between
proportional and non-
proportional situations using
tables | | | | | | | F | | Instruction
Assessment | 978-1-938858-08-6 | 167
170 | Exploration 2 in Section 3.3 Exercise 2 in Section 3.3 | | (5) Proportionality. The student applies
mathematical process standards to use
proportional and non-proportional
relationships to develop foundational
concepts of functions. The student is
expected to: | (F) distinguish between
proportional and non-
proportional situations using
tables, graphs, and equations
in the form
y = kx or y = mx + b, where b ≠
0 | (ii) distinguish between
proportional and non-
proportional situations using
graphs | | | | | | | P | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 167
173 | Exploration 2 in Section 3.3
Exercise 7 in Section 3.3 | | (5) Proportionality. The student applies
mathematical process standards to use
proportional and non-proportional
relationships to develop foundational
concepts of functions. The student is
expected to: | (F) distinguish between
proportional and non-
proportional situations using
tables, graphs, and equations
in the form
y = kx or y = mx + b, where b ≠
0 | (iii) distinguish between
proportional and non-
proportional situations using
equations in the form
y = kx or y = mx + b, where b ≠
0 | | | | | | | F
F
F | in i | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 201
189 | Example 4 in Section 3.5 Exercise 24 in Section 3.4 | | (5) Proportionality. The student applies
mathematical process standards to use
proportional and non-proportional
relationships to develop foundational
concepts of functions. The student is
expected to: | (G) identify functions using sets of ordered pairs, tables, mappings, and graphs | (i) identify functions using sets of ordered pairs | | | | | | | G
G
G | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 96
100 | Problem 2 in Section 2.1
Exercise 15 in Section 2.1 | | (5) Proportionality. The student applies mathematical process standards to use proportional and non-proportional relationships to develop foundational concepts of functions. The student is expected to: | (G) identify functions using sets of ordered pairs, tables, mappings, and graphs | (ii) identify functions using tables | | | | | |---|--|---|-----------------------------------|---|-------------------|--| | | G
G
G | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 113
115 | Exploration 3 in Section 2.2
Exercise 7 in Section 2.2 | | (5) Proportionality. The student applies matthematical process standards to use proportional and non-proportional relationships to develop foundational concepts of functions. The student is expected to: | (G) identify functions using
sets of ordered pairs, tables,
mappings, and graphs | (iii) identify functions using mappings | | | | | | | 6
G
G
G | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 93
100 | Exploration 5 in Section 2.1
Exercise 15 in Section 2.1 | | (5) Proportionality. The student applies matthematical process standards to use proportional and non-proportional relationships to develop foundational concepts of functions. The student is expected to: | (G) identify functions using
sets of ordered pairs, tables,
mappings, and graphs | (iv) identify functions using graphs | | | | | | | G
G
G | 97 | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 113
115 | Exploration 3 in Section 2.2
Exercise 6 in Section 2.2 | | (5) Proportionality. The student applies matthematical process standards to use proportional and non-proportional relationships to develop foundational concepts of functions. The student is expected to: | (H) identify examples of
proportional and non-
proportional functions that
arise from mathematical and
real-world problems | (i) identify examples of proportional functions that arise from mathematical problems | | | | | | | H • • • • • • • • • • • • • • • • • • • | | Instruction
Instruction | 978-1-938858-08-6
978-1-938858-08-6 | 197
168 | Exploration 4 in Section 3.5 Exploration 3 in Section 3.3 | | (5) Proportionality. The student applies mathematical process standards to use proportional and non-proportional relationships to develop foundational concepts of functions. The student is expected to: | (H) identify examples of proportional and non-proportional functions that arise from mathematical and real-world problems | (ii) identify examples of proportional functions that arise from real-world problems | | | | | | | Н | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 197
172 | Exploration 4 in Section 3.5
Exercise 6 in Section 3.3 | | (5) Proportionality. The student applies matthematical process standards to use proportional and non-proportional
relationships to develop foundational concepts of functions. The student is expected to: | (H) identify examples of
proportional and non-
proportional functions that
arise from mathematical and
real-world problems | (iii) identify examples of non-
proportional functions that
arise from mathematical
problems | | | | | | | К | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 167
173 | Exploration 2 in Section 3.3 Exercise 7 in Section 3.3 | | (5) Proportionality. The student applies
matthematical process standards to use
proportional and non-proportional
relationships to develop foundational
concepts of functions. The student is
expected to: | (H) identify examples of proportional and non-proportional functions that arise from mathematical and real-world problems | (iv) identify examples of non-
proportional functions that
arise from real-world problems | | | | | | | (| No | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 201
205 | Example 4 in Section 3.5 Exercise 17 in Section 3.5 | | (5) Proportionality. The student applies matthematical process standards to use proportional and non-proportional relationships to develop foundational concepts of functions. The student is expected to: | (I) write an equation in the form
y = mx + b to model a linear relationship between two quantities using verbal, numerical, tabular, and graphical representations | (i) write an equation in the form
y = mx + b to model a linear
relationship between two
quantities using verbal
representations | | | | | | | | | Instruction Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 196
203
203 | Exploration 3 in Section 3.5 Exercise 5 in Section 3.5 Exercise 6 in Section 3.5 | | (5) Proportionality. The student applies mathematical process standards to use proportional and non-proportional relationships to develop foundational concepts of functions. The student is expected to: | (I) write an equation in the
form
y = mx + b to model a linear
relationship between two
quantities using verbal,
numerical, tabular, and
graphical representations | (ii) write an equation in the form y = mx + b to model a linear relationship between two quantities using numerical representations | | | | | | | | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 194
203 | Exploration 1 in Section 3.5
Exercise 3 in Section 3.5 | | |
I | , | | {1 | | | |--|--|---|--|--|--------------------------------------|---| | (5) Proportionality. The student applies
mathematical process standards to use | (I) write an equation in the
form | (iii) write an equation in the
form | | | | | | proportional and non-proportional
relationships to develop foundational | y = mx + b to model a linear
relationship between two | y = mx + b to model a linear
relationship between two | | | | | | concepts of functions. The student is expected to: | quantities using verbal,
numerical, tabular, and | quantities using tabular
representations | | | | | | , | graphical representations | | | | | | | | | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 164
171 | Exploration 1 in Section 3.3
Exercise 3 in Section 3.3 | | indialistististististististististististististi | | | | 5.0 : 555555 55 5 | | LEAGUE OF THE COLUMN TO | | <u></u> | | | | - | | | | (5) Proportionality. The student applies
mathematical process standards to use | (I) write an equation in the
form | (iv) write an equation in the
form | | | | | | proportional and non-proportional
relationships to develop foundational | y = mx + b to model a linear
relationship between two | y = mx + b to model a linear
relationship between two | | | | | | concepts of functions. The student is
expected to: | quantities using verbal,
numerical, tabular, and | quantities using graphical representations | | | | | | ., | graphical representations | , | | | | | | | | iv | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 175
183 | Exploration 1 in Section 3.4 Exercise 1 in Section 3.4 | | | | | Assessment | 978-1-938858-08-6 | 203 | Exercise 6 in Section 3.5 | | <u> </u> | | ik | | | | | | (6) Expressions, equations, and
relationships. The student applies | (A) describe the volume
formula | | | | | | | mathematical process standards to develop
mathematical relationships and make | V = Bh of a cylinder in terms of
its base area and its height | | | | | | | connections to geometric formulas. The
student is expected to: | | | | | | | | | :
-A - : - : - : - : - : - : - : - : | | Instruction | 978-1-938858-08-6 | 74 | Problem 5 in Section 1.7 | | | | | Assessment | 978-1-938858-08-6 | 80 | Exercise 17 in Section 1.7 | | | | | | | | | | (6) Expressions, equations, and | (B) model the relationship | (i) model the relationship | | | | | | relationships. The student applies
mathematical process standards to develop | between the volume of a
cylinder and a cone having | between the volume of a
cylinder and a cone having | | | | | | mathematical relationships and make connections to geometric formulas. The | both congruent bases and
heights and connect that | both congruent bases and
heights | | | | | | student is expected to: | relationship to the formulas | | | | | | | | .B | | | | | | | | B | | | | | - | | <u></u> | | | | - | | | | (6) Expressions, equations, and
relationships. The student applies | (B) model the relationship
between the volume of a | (ii) connect that relationship to
the formulas | | | | | | mathematical process standards to develop
mathematical relationships and make | cylinder and a cone having
both congruent bases and | | | | | | | connections to geometric formulas. The
student is expected to: | heights and connect that
relationship to the formulas | | | | | | | | :
.B | | | | | | | | B | | | | | | | | В | | | | | | | (6) Expressions, equations, and | (C) use models and diagrams | (i) use models to explain the | | | | | | relationships. The student applies
mathematical process standards to develop | to explain the Pythagorean
theorem | Pythagorean theorem | | | | | | mathematical relationships and make connections to geometric formulas. The | | | | 1 | | | | student is expected to: | | | | | | ; | | | | | | | | | | | .c | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 519
525 | Exploration 3 in Section 10.1 Exercise 5 in Section 10.1 | | | .C | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 519
525 | | | | 6
6
6 | | | | | | | (6) Expressions, equations, and relationships. The student applies | C C C C C C C C C Use models and diagrams to explain the Pythagorean | (ii) use diagrams to explain the
Pythagorean theorem | | | | | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make | | | | | | | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop | to explain the Pythagorean | | | | | | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The | to explain the Pythagorean | | | 978-1-938858-08-6 | 525
520 | Exercise 5 in Section 10.1 Exploration 4 in Section 10.1 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The | to explain the Pythagorean | | Assessment | 978-1-938858-08-6 | 525 | Exercise 5 in Section 10.1 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The | to explain the Pythagorean | | Assessment Instruction | 978-1-938858-08-6 | 525
520 | Exercise 5 in Section 10.1 Exploration 4 in Section 10.1 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards
to develop mathematical relationships and make connections to geometric formulas. The student is expected to: | to explain the Pythagorean theorem G. G. G. (A) solve problems involving | Pythagorean theorem | Assessment Instruction | 978-1-938858-08-6 | 525
520 | Exercise 5 in Section 10.1 Exploration 4 in Section 10.1 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use | to explain the Pythagorean theorem | Pythagorean theorem | Assessment Instruction | 978-1-938858-08-6 | 525
520 | Exercise 5 in Section 10.1 Exploration 4 in Section 10.1 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to: (7) Expressions, equations, and relationships. The student applies | to explain the Pythagorean theorem O (A) solve problems involving the volume of cylinders, cones, | Pythagorean theorem | Assessment Instruction | 978-1-938858-08-6 | 525
520 | Exercise 5 in Section 10.1 Exploration 4 in Section 10.1 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is | to explain the Pythagorean theorem O (A) solve problems involving the volume of cylinders, cones, | Pythagorean theorem | Assessment Instruction | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 525
520
526 | Exercise 5 in Section 10.1 Exploration 4 in Section 10.1 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is | to explain the Pythagorean theorem O (A) solve problems involving the volume of cylinders, cones, | Pythagorean theorem | Assessment Instruction Assessment Instruction Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 525
520
526
526
74
80 | Exercise 5 in Section 10.1 Exploration 4 in Section 10.1 Exercise 10 in Section 10.1 Problem 5 in Section 1.7 Exercise 17 in Section 1.7 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is | to explain the Pythagorean theorem O (A) solve problems involving the volume of cylinders, cones, | Pythagorean theorem | Assessment Instruction Assessment Instruction | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 525
520
526 | Exercise 5 in Section 10.1 Exploration 4 in Section 10.1 Exercise 10 in Section 10.1 Problem 5 in Section 1.7 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | to explain the Pythagorean theorem G G (A) solve problems involving the volume of cylinders, cones, and spheres A (A) solve problems involving the volume of cylinders, cones, and spheres | Pythagorean theorem (i) solve problems involving the volume of cylinders (ii) solve problems involving the volume of cylinders | Assessment Instruction Assessment Instruction Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 525
520
526
526
74
80 | Exercise 5 in Section 10.1 Exploration 4 in Section 10.1 Exercise 10 in Section 10.1 Problem 5 in Section 1.7 Exercise 17 in Section 1.7 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | to explain the Pythagorean theorem C C (A) solve problems involving the volume of cylinders, cones, and spheres | Pythagorean theorem (i) solve problems involving the volume of cylinders (ii) solve problems involving the volume of cylinders | Assessment Instruction Assessment Instruction Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 525
520
526
526
74
80 | Exercise 5 in Section 10.1 Exploration 4 in Section 10.1 Exercise 10 in Section 10.1 Problem 5 in Section 1.7 Exercise 17 in Section 1.7 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies to the student applies are student applies. | to explain the Pythagorean theorem C (A) solve problems involving the volume of cylinders, cones, and spheres (A) solve problems involving the volume of cylinders, cones, and spheres | Pythagorean theorem (i) solve problems involving the volume of cylinders (ii) solve problems involving the volume of cylinders | Assessment Instruction Assessment Instruction Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 525
520
526
526
74
80 | Exercise 5 in Section 10.1 Exploration 4 in Section 10.1 Exercise 10 in Section 10.1 Problem 5 in Section 1.7 Exercise 17 in Section 1.7 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | to explain the Pythagorean theorem C (A) solve problems involving the volume of cylinders, cones, and spheres (A) solve problems involving the volume of cylinders, cones, and spheres | Pythagorean theorem (i) solve problems involving the volume of cylinders (ii) solve problems involving the volume of cylinders | Assessment Instruction Assessment Instruction Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 525
520
526
526
74
80 | Exercise 5 in Section 10.1 Exploration 4 in Section 10.1 Exercise 10 in Section 10.1 Problem 5 in Section 1.7 Exercise 17 in Section 1.7 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | to explain the Pythagorean theorem C (A) solve problems involving the volume of cylinders, cones, and spheres (A) solve problems involving the volume of cylinders, cones, and spheres | Pythagorean theorem (i) solve problems involving the volume of cylinders (ii) solve problems involving the volume of cylinders | Instruction Assessment Instruction Assessment Assessment Assessment Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 525
520
526
74
80
61 | Exploration 4 in Section 10.1 Exploration 4 in Section 10.1 Exercise 10 in Section 10.1 Problem 5 in Section 1.7 Exercise 20 in Section 1.7 Exercise 20 in Section 1.7 Exercise 20 in Section 1.7 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | to explain the Pythagorean theorem C (A) solve problems involving the volume of cylinders, cones, and spheres (A) solve problems involving the volume of
cylinders, cones, and spheres | Pythagorean theorem (i) solve problems involving the volume of cylinders (ii) solve problems involving the volume of cylinders | Instruction Assessment Instruction Assessment Assessment Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 525
520
526
74
80
81 | Exercise 5 in Section 10.1 Exploration 4 in Section 10.1 Exercise 10 in Section 10.1 Problem 5 in Section 1.7 Exercise 20 in Section 1.7 Problem 5 in Section 1.7 Problem 5 in Section 1.7 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | to explain the Pythagorean theorem (A) solve problems involving the volume of cylinders, cones, and spheres (A) solve problems involving the volume of cylinders, cones, and spheres (A) solve problems involving the volume of cylinders, cones, and spheres (A) solve problems involving | Pythagorean theorem (i) solve problems involving the volume of cylinders (ii) solve problems involving the volume of cones (ii) solve problems involving the volume of cones | Instruction Assessment Instruction Assessment Assessment Assessment Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 525
520
526
74
80
61 | Exploration 4 in Section 10.1 Exploration 4 in Section 10.1 Exercise 10 in Section 10.1 Problem 5 in Section 1.7 Exercise 20 in Section 1.7 Exercise 20 in Section 1.7 Exercise 20 in Section 1.7 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | to explain the Pythagorean theorem (A) solve problems involving the volume of cylinders, cones, and spheres (A) solve problems involving the volume of cylinders, cones, and spheres | Pythagorean theorem (i) solve problems involving the volume of cylinders (ii) solve problems involving the volume of cones (ii) solve problems involving the volume of cones | Instruction Assessment Instruction Assessment Assessment Assessment Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 525
520
526
74
80
61 | Exploration 4 in Section 10.1 Exploration 4 in Section 10.1 Exercise 10 in Section 10.1 Problem 5 in Section 1.7 Exercise 20 in Section 1.7 Exercise 20 in Section 1.7 Exercise 20 in Section 1.7 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | to explain the Pythagorean theorem G (A) solve problems involving the volume of cylinders, cones, and spheres (A) solve problems involving the volume of cylinders, cones, and spheres (A) solve problems involving the volume of cylinders, cones, and spheres | Pythagorean theorem (i) solve problems involving the volume of cylinders (ii) solve problems involving the volume of cones (ii) solve problems involving the volume of cones | Instruction Assessment Instruction Assessment Assessment Assessment Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 525
520
526
74
80
61 | Exploration 4 in Section 10.1 Exploration 4 in Section 10.1 Exercise 10 in Section 10.1 Problem 5 in Section 1.7 Exercise 20 in Section 1.7 Exercise 20 in Section 1.7 Exercise 20 in Section 1.7 | | (6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical process that and standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | to explain the Pythagorean theorem G (A) solve problems involving the volume of cylinders, cones, and spheres (A) solve problems involving the volume of cylinders, cones, and spheres (A) solve problems involving the volume of cylinders, cones, and spheres | Pythagorean theorem (i) solve problems involving the volume of cylinders (ii) solve problems involving the volume of cones (ii) solve problems involving the volume of cones | Instruction Assessment Instruction Assessment Assessment Assessment Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 525
520
526
74
80
61 | Exploration 4 in Section 10.1 Exploration 4 in Section 10.1 Exercise 10 in Section 10.1 Problem 5 in Section 1.7 Exercise 20 in Section 1.7 Exercise 20 in Section 1.7 Exercise 20 in Section 1.7 | | | w::::::::::::::::::::::::::::::::::::: | | | |] | | |--|--|---|---
---|--|---| | .:.:.:::::::::::::::::::::::::::::::::: | A [.] .] .] .] .] .] .] .] | | | | | - | | (7) Expressions, equations, and
relationships. The student applies | (B) use previous knowledge of
surface area to make | (i) use previous knowledge of
surface area to make | | | | | | mathematical process standards to use | connections to the formulas for | connections to the formulas for | | | | | | geometry to solve problems. The student is expected to: | lateral and total surface area
and determine solutions for | lateral surface area | | | | | | | problems involving rectangular
prisms, triangular prisms, and | | | | | | | | cylinders | | | | | | | | ß.
B | | | | | | | | B | (kga baga baga baga baga baga baga baga b | | | | | | | 'B | | | | | | | (7) Expressions, equations, and
relationships. The student applies | (B) use previous knowledge of
surface area to make | (ii) use previous knowledge of
surface area to make | | | | | | mathematical process standards to use
geometry to solve problems. The student is | connections to the formulas for
lateral and total surface area | connections to the formulas for
total surface area | | | | | | expected to: | and determine solutions for
problems involving rectangular | 1 | | | | | | | prisms, triangular prisms, and cylinders | | | | | | | | cymiucis | | | | | | | | B | | | | | ÷ | | | 8
B | ji. | | | | | | (7) Functions and | (D) | | | | | | | (7) Expressions, equations, and
relationships. The student applies | (B) use previous knowledge of
surface area to make | problems involving rectangular | | | | | | mathematical process standards to use
geometry to solve problems. The student is | connections to the formulas for
lateral and total surface area | prisms | | | | | | expected to: | and determine solutions for
problems involving rectangular | | | | | | | | prisms, triangular prisms, and
cylinders | | | | | | | | g. s s s s s | | | | | | | | | | <u>}</u> | | | <u> </u> | | | B | | | | | | | (7) Expressions, equations, and | (B) use previous knowledge of | (iv) determine solutions for | | | | | | relationships. The student applies | surface area to make | problems involving triangular | | | | | | mathematical process standards to use
geometry to solve problems. The student is | connections to the formulas for
lateral and total surface area | prisms | | | | | | expected to: | and determine solutions for
problems involving rectangular | | | | | | | | prisms, triangular prisms, and
cylinders | | | | | | | | B | N | | | | | | | B | N | | | | | | | ;B | iv
iv | | | | | | | (5) | | | | | | | (/) Expressions, equations, and | | (v) determine solutions for | 1 | | 1 | | | (7) Expressions, equations, and relationships. The student applies | (B) use previous knowledge of
surface area to make connections to the formulas for | problems involving cylinders | | | | | | relationships. The student applies
mathematical process standards to use
geometry to solve problems. The student is | surface area to make
connections to the formulas for
lateral and total surface area | problems involving cylinders | | | | | | relationships. The student applies
mathematical process standards to use | surface area to make
connections to the formulas for
lateral and total surface area
and determine solutions for
problems involving rectangular | problems involving cylinders | | | | | | relationships. The student applies
mathematical process standards to use
geometry to solve problems. The student is | surface area to make
connections to the formulas for
lateral and total surface area
and determine solutions for | problems involving cylinders | | | | | | relationships. The student applies
mathematical process standards to use
geometry to solve problems. The student is | surface area to make
connections to the formulas for
lateral and total surface area
and determine solutions for
problems involving rectangular
prisms, triangular prisms, and | problems involving cylinders | | | | | | relationships. The student applies
mathematical process standards to use
geometry to solve problems. The student is | surface area to make
connections to the formulas for
lateral and total surface area
and determine solutions for
problems involving rectangular
prisms, triangular prisms, and | problems involving cylinders | | | | | | relationships. The student applies
mathematical process standards to use
geometry to solve problems. The student is | surface area to make
connections to the formulas for
lateral and total surface area
and determine solutions for
problems involving rectangular
prisms, triangular prisms, and | problems involving cylinders | | | | | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders | problems involving cylinders | | | | | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders | problems involving cylinders | | | | | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders | problems involving cylinders | | | | | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders | problems involving cylinders | Instruction | 978-1,403855-0-8- | 621 | Example 2 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders | problems involving cylinders | Instruction
Instruction | 978-1-938558-08-6
978-1-938558-08-6 | 521
522 | Example 2 in Section 10.1 Example 4 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders | problems involving cylinders | | | | | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders (C) use the Pythagorean Theorem and its converse to solve problems | problems involving cylinders W. (i) use the Pythagorean Theorem to solve problems | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 523
524 | Example 4 in Section 10.1
Exercise 1 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to Theorem and its converse to solve problems | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 523
524 | Example 4 in Section 10.1
Exercise 1 in Section 10.1 |
| relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cyfinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean (C) use the Pythagorean | (i) use the Pythagorean Theorem to solve problems (ii) use [the Pythagorean | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 523
524 | Example 4 in Section 10.1
Exercise 1 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use mathematical process standards to use mathematical process standards to use | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to Theorem and its converse to solve problems | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 523
524
525 | Example 4 in Section 10.1
Exercise 1 in Section 10.1
Exercise 7 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to Theorem and its converse to solve problems | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 523
524 | Example 4 in Section 10.1
Exercise 1 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to Theorem and its converse to solve problems | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction Assessment Assessment Instruction | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 523
524
525
525
525 | Example 4 in Section 10.1 Exercise 1 in Section 10.1 Exercise 7 in Section 10.1 Exercise 7 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cyfinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction Assessment Assessment Instruction | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 523
524
525
525
525 | Example 4 in Section 10.1 Exercise 1 in Section 10.1 Exercise 7 in Section 10.1 Exercise 7 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cyrinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction Assessment Assessment Instruction | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 523
524
525
525
525 | Example 4 in Section 10.1 Exercise 1 in Section 10.1 Exercise 7 in Section 10.1 Exercise 7 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction Assessment Assessment Instruction | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 523
524
525
525
525 | Example 4 in Section 10.1 Exercise 1 in Section 10.1 Exercise 7 in Section 10.1 Exercise 7 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction Assessment Assessment Instruction | 978-1-938658-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 523
524
525
525
524
524
525 | Example 4 in Section 10.1 Exercise 1 in Section 10.1 Exercise 7 in Section 10.1 Exercise 7 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the
Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction Assessment Assessment Instruction Assessment Instruction Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 523
524
525
525
524
525
525 | Example 4 in Section 10.1 Exercise 1 in Section 10.1 Exercise 7 in Section 10.1 Problem 2 in Section 10.1 Exercise 6 in Section 10.1 Exercise 6 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cyrinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction Assessment Assessment Instruction Assessment | 978-1-938658-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 523
524
525
525
524
524
525 | Example 4 in Section 10.1 Exercise 1 in Section 10.1 Exercise 7 in Section 10.1 Exercise 7 in Section 10.1 Problem 2 in Section 10.1 Exercise 6 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, triangular prisms, and cyfinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (D) determine the distance between two points on a coordinate plane using the Pythagorean Theorem | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction Assessment Assessment Instruction Assessment Instruction Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 523
524
525
525
524
525
525 | Example 4 in Section 10.1 Exercise 1 in Section 10.1 Exercise 7 in Section 10.1 Problem 2 in Section 10.1 Exercise 6 in Section 10.1 Exercise 6 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cyrinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction Assessment Assessment Instruction Assessment Instruction Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 523
524
525
525
524
525
525 | Example 4 in Section 10.1 Exercise 1 in Section 10.1 Exercise 7 in Section 10.1 Problem 2 in Section 10.1 Exercise 6 in Section 10.1 Exercise 6 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (8) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cyrinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (A) write one-variable equations or inequalities with variables on both sides that | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction Assessment Assessment Instruction Assessment Instruction Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 523
524
525
525
524
525
525 | Example 4 in Section 10.1 Exercise 1 in Section 10.1 Exercise 7 in Section 10.1 Problem 2 in Section 10.1 Exercise 6 in Section 10.1 Exercise 6 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (8) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cyrinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (D) determine the distance between two points on a coordinate plane using the Pythagorean Theorem (A) write one-variable equations or inequalities with variables on both sides that represent problems using rational number coefficients | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction Assessment Assessment Instruction Assessment Instruction Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 523
524
525
525
524
525
525 | Example 4 in Section 10.1 Exercise 1 in Section 10.1 Exercise 7 in Section 10.1 Problem 2 in Section 10.1 Exercise 6 in Section 10.1 Exercise 6 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (8) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | surface area to make
connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cyfinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem Theorem and its converse to solve problems (C) use the Pythagorean Theorem Theorem and its converse to solve problems (C) use the Pythagorean Theorem Theorem and its converse to solve problems (C) use the Pythagorean Theorem Theorem Theorem and its converse to solve problems using the pythagorean Theorem Theo | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction Assessment Assessment Instruction Assessment Instruction Assessment Instruction Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 523
524
525
525
525
524
525
525
525 | Example 4 in Section 10.1 Exercise 1 in Section 10.1 Exercise 7 in Section 10.1 Problem 2 in Section 10.1 Exercise 6 in Section 10.1 Exercise 6 in Section 10.1 Exploration 2 in Section 10.3 Exercise 6 in Section 10.3 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (8) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cyfinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (A) were problems (B) (C) use the Pythagorean Theorem and its converse to solve problems (C) (C) use the Pythagorean Theorem and its converse to solve problems (B) (C) (C) use the Pythagorean Theorem and its converse to solve problems (C) (C) use the Pythagorean Theorem Theorem and its converse to solve problems (C) (D) determine the distance between two points on a coordinate plane using the Pythagorean Theorem Dides using rational number coefficients and constants | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction Assessment Assessment Instruction Assessment Instruction Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 523
524
525
525
524
525
525 | Example 4 in Section 10.1 Exercise 1 in Section 10.1 Exercise 7 in Section 10.1 Problem 2 in Section 10.1 Exercise 6 in Section 10.1 Exercise 6 in Section 10.1 | | relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (8) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: | surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cyrinders (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (C) use the Pythagorean Theorem and its converse to solve problems (D) determine the distance between two points on a coordinate plane using the Pythagorean Theorem (A) write one-variable equations or inequalities with variables on both sides that represent problems using rational number coefficients | (ii) use [the Pythagorean Theorem's] converse to solve | Instruction Assessment Assessment Instruction Assessment Instruction Assessment Instruction Assessment Instruction Instruction Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 523
524
525
525
524
525
524
525
525
525 | Example 4 in Section 10.1 Exercise 1 in Section 10.1 Exercise 7 in Section 10.1 Problem 2 in Section 10.1 Exercise 6 in Section 10.1 Exercise 6 in Section 10.1 Exercise 6 in Section 10.3 Exercise 6 in Section 10.3 | | Observations systems and sections and sections are designed in the section of o | (8) Expressions equations and | | | | | | | |--|---|---
--|-------------|-------------------|----|--------------------------| | (ii) Expressions equations and mathematical primate interesting the same presental primate interesting the same presental primate interesting the same in | relationships. The student applies
mathematical process standards to use one-
variable equations or inequalities in problem | world problem when given a
one-variable equation or
inequality with variables on
both sides of the equal sign
using rational number | | | | | | | velocities provided requires months of the second s | | 8
6
8
8 | | | | | | | (8) Expressions, equations, and mathematical process standards to use one varieties equation on the internal expression in the control of | relationships. The student applies
mathematical process standards to use one-
variable equations or inequalities in problem | variable equations with
variables on both sides of the
equal sign that represent
mathematical and real-world
problems using rational
number coefficients and | equations with variables on
both sides of the equal sign
that represent mathematical
problems using rational
number coefficients and | | | | | | existoring. The student is expected for interest and students in the production with students on the students and real executions and constants. (b) Expressors, equations, and expected for interest and students students. (a) Expressors, equations, and expected to expec | | 6
G | | Instruction | 978-1-938858-08-6 | 66 | Example 3 in Section 1.6 | | (ii) Expressions, equations, and relationships. The student applies grow network and contained and care applies a | relationships. The student applies
mathematical process standards to use one-
variable equations or inequalities in problem | variable equations with
variables on both sides of the
equal sign that represent
mathematical and real-world
problems using rational
number coefficients and | equations with variables on
both sides of the equal sign
that represent real-world
problems using rational
number coefficients and | | | | | | mistrations The student applies mathematical process attended to use of measurable equations with variables on the student is expected to: Column | | ξ
ο
ς
ο | | | | | | | (6) Expressions, equations, and mathematical process standards to use one-variable equations or inequalities in problem stituations. The student applies mathematical process standards to use one-variable equations or inequalities in problems using rational constants. (7) Important arguments to establish facts about the angle shabitors. The student applies mathematical process standards to use one-variable equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problems using rational shabitors. The student is expected to: (8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problems shabitors. The student is expected to: (9) use informal arguments to establish facts about the angle-shabitors. The student is expected to: (9) use informal arguments to establish facts about the angle-shabitors. The student is expected to: (9) use informal arguments to establish facts about the angle-shabitors. The student is expected to: (9) use informal arguments to establish facts about the angle-shabitors. The student is expected to: (9) use informal arguments to establish facts about the angle-shabitor or inequalities in problems shabitors. The student is expected to: (9) use informal arguments to establish facts about the angle-shabitors or inequalities in problems and ore | relationships. The student applies
mathematical process standards to use one-
variable equations or inequalities in problem | variable equations with
variables on both sides of the
equal sign that represent
mathematical and real-world
problems using rational
number coefficients and | equations with variables on
both sides of the equal sign
that represent mathematical
problems using rational
number coefficients and | | | | | | relationships. The student applies mathematical process standards to use one variable equations with variables on both sides of the equal sign that represent mathematical process standards of the equal sign that represent real-world number coefficients and constants | | 0 | | | | | | | (8) Expressions, equalions, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student applies mathematical process standards to use one-variable operations or inequalities in problem situations. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student applies mathematical process standards to use one-variable equations or inequalities in problem in the problem of | relationships. The student applies
mathematical process standards to use one-
variable equations or inequalities in problem | variable equations with
variables on both sides of the
equal sign that represent
mathematical and real-world
problems using rational
number coefficients and | equations with variables on
both sides of the equal sign
that represent real-world
problems using rational
number coefficients and | | | | | | relationships. The student applies mathematical to use one-variable equations or inequalities in problem situations. The student is expected to: (8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to: (9) Use informal arguments to establish facts about the angle sum of triangles (9) Use informal arguments to establish facts about the angle sum of triangles (9) Use informal arguments to establish facts about the angle sum of triangles (9) Use informal arguments to establish facts about the substitutions. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to: (8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to: (9) Use informal arguments to establish facts about the angle situations arguments to establish facts about the angle situations. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to: (9) Use informal arguments to establish facts about the angle situations arguments to
establish facts about the angle situations arguments to establish facts about the angle situations are cut by a transversal when parallel times are cut by a transversal when parallel research of similarity of | | G | , | | | | | | relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to: Columbia | relationships. The student applies | (D) use informal arguments to | | | | | 7 | | relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to: Columbia | variable equations or inequalities in problem | establish facts about the angle
sum and exterior angle of
triangles, the angles created
when parallel lines are cut by a
transversal, and the angle-
angle criterion for similarity of | establish facts about the angle | | | | | | relationships. The student applies mathematical process standards to use one sum and exterior angle of sum and exterior angle of sum and exterior angle of striangles, the angles created when parallel mes are cut by a transversal when parallel mes are cut by a transversal angle or iterion for similarity of | variable equations or inequalities in problem | establish facts about the angle
sum and exterior angle of
triangles, the angles created
when parallel lines are cut by a
transversal, and the angle-
angle criterion for similarity of | establish facts about the angle | | | | | | relationships. The student applies mathematical process standards to use one sum and exterior angle of sum and exterior angle of sum and exterior angle of striangles, the angles created when parallel mes are cut by a transversal when parallel mes are cut by a transversal angle or iterion for similarity of | variable equations or inequalities in problem situations. The student is expected to: (8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem | establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angleangle criterion for similarity of triangles (D) (D) use informal arguments to establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of | establish facts about the angle sum of triangles (ii) use informal arguments to establish facts about the | | | | | | | variable equations or inequalities in problem situations. The student is expected to: (8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem | establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angleangle criterion for similarity of triangles (D) (D) use informal arguments to establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of | establish facts about the angle sum of triangles (ii) use informal arguments to establish facts about the | | | | | | | variable equations or inequalities in problem situations. The student is expected to: (8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to: (8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem | establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles (D) use informal arguments to establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. | establish facts about the angle sum of triangles (ii) use informal arguments to establish facts about the exterior angles of triangles (iii) use informal arguments to establish facts about the angles of triangles angles of triangles t | | | | | | <u> </u> | variable equations or inequalities in problem situations. The student is expected to: (8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to: (8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem | establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles (D) use informal arguments to establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. | establish facts about the angle sum of triangles (ii) use informal arguments to establish facts about the exterior angles of triangles (iii) use informal arguments to establish facts about the angles of triangles angles of triangles t | | | | | | | variable equations or inequalities in problem situations. The student is expected to: (8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to: (8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem | establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles (D) use informal arguments to establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. | establish facts about the angle sum of triangles (ii) use informal arguments to establish facts about the exterior angles of triangles (iii) use informal arguments to establish facts about the angles of triangles angles of triangles t | | | | | | (8) Expressions, equations, and relationships. The student applies mathematical process standards to use onevariable equations or inequalities in problem situations. The student is expected to: | (D) use informal arguments to
establish facts about the angle
sum and exterior angle of
triangles, the angles created
when parallel lines are cut by a
transversal, and the angle-
angle criterion for similarity of
triangles | (iv) use informal arguments to establish facts about the angle-angle criterion for similarity of triangles | | | | | |--|---|---|---|--|--------------------------|---| | | d
6
d
0 | ir
N
N
N | | | | | | (9) Expressions, equations, and relationships. The student applies mathematical process standards to use multiple representations to develop foundational concepts of simultaneous linear equations. The student is expected to: | (A) identify and verify the values of x and y that simultaneously satisfy two linear equations in the form y = mx + b from the intersections of the graphed equations | (i) identify the values of x and y that simultaneously satisfy two linear equations in the form y = mx + b from the intersections of the graphed equations. | | | | | | | A | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 234
235 | Exploration 4 in Section 4.1 Exercise 1 in Section 4.1 | | (9) Expressions, equations, and relationships. The student applies mathematical process standards to use multiple representations to develop foundational concepts of simultaneous linear equations. The student is expected to: | (A) identify and verify the values of x and y that simultaneously satisfy two linear equations in the form y = mx + b from the intersections of the graphed equations | (ii) verify the values of x and y that simultaneously satisfy two linear equations in the form y = mx + b from the intersections of the graphed equations. | | | | | | | A
A
R | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 234
235 | Exploration
4 in Section 4.1
Exercise 1 in Section 4.1 | | (10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to: | (A) generalize the properties
of orientation and congruence
of rotations, reflections,
translations, and dilations of
two-dimensional shapes on a
coordinate plane | (i) generalize the properties of
orientation rotations of two-
dimensional shapes on a
coordinate plane | | | | | | | A
A
A | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 569
570 | Exploration 3 in Section 10.5 Exercise 3 in Section 10.5 | | (10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to: | (A) generalize the properties
of orientation and congruence
of rotations, reflections,
translations, and dilations of
two-dimensional shapes on a
coordinate plane | (ii) generalize the properties of
orientation reflections of two-
dimensional shapes on a
coordinate plane | | | | | | | A | il
ir
ii | Instruction Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 559
561
561 | Example 2 in Section 10.4 Exercise 5 in Section 10.4 Exercise 6 in Section 10.4 | | (10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to: | (A) generalize the properties
of orientation and congruence
of rotations, reflections,
translations, and dilations of
two-dimensional shapes on a
coordinate plane | (iii) generalize the properties of
orientation translations of two-
dimensional shapes on a
coordinate plane | | | | | | | A
A
A
X | | Instruction Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 555
561
561 | Example 1 in Section 10.4 Exercise 5 in Section 10.4 Exercise 6 in Section 10.4 | | (10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to: | (A) generalize the properties
of orientation and congruence
of rotations, reflections,
translations, and dilations of
two-dimensional shapes on a
coordinate plane | (iv) generalize the properties of
orientation dilations of two-
dimensional shapes on a
coordinate plane | | | | | | | A | iV
iv
iV, | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 575
583 | Exploration 3 in Section 10.6
Exercise 4 in Section 10.6 | | (10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to: | (A) generalize the properties
of orientation and congruence
of rotations, reflections,
translations, and dilations of
two-dimensional shapes on a
coordinate plane | (v) generalize the congruence
of rotations of two-dimensional
shapes on a coordinate plane | | | | | | | A | V | Instruction Instruction Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 564
565
582
570 | Exploration 1 in Section 10.5 Problem 1 in Section 10.5 Exercise 1 in Section 10.6 Exercise 3 in Section 10.5 | | (10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to: | (A) generalize the properties
of orientation and congruence
of rotations, reflections,
translations, and dilations of
two-dimensional shapes on a
coordinate plane | (vi) generalize the congruence
of reflections of two-
dimensional shapes on a
coordinate plane | | | | | | | A
K
A | VI
vi
VI | Instruction
Assessment
Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 559
561
561 | Example 2 in Section 10.4
Exercise 5 in Section 10.4
Exercise 6 in Section 10.4 | | (10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to: | (A) generalize the properties
of orientation and congruence
of rotations, reflections,
translations, and dilations of
two-dimensional shapes on a
coordinate plane | (vii) generalize the congruence
of translations of two-
dimensional shapes on a
coordinate plane | | | | | |--|--|--|-----------------------------------|---|-------------------|---| | | A
A | vii
vii
vii | Instruction Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 555
561
561 | Example 1 in Section 10.4 Exercise 5 in Section 10.4 Exercise 6 in Section 10.4 | | (10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to: | (B) differentiate between
transformations that preserve
congruence and those that do
not | | | | | | | | 8
6
8
8 | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 572
582 | Exploration 1 in Section 10.6
Exercise 1 in Section 10.6 | | (10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to: | (C) explain the effect of translations, reflections over the x- or y-axis, and rotations limited to 90°, 180°, 270°, and 360° as applied to two-dimensional shapes on a coordinate plane using an algebraic representation | (i) explain the effect of
translations as applied to two-
dimensional shapes on a
coordinate plane using an
algebraic representation | | | | | | | 6 | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 555
561 | Example 1 in Section 10.4
Exercise 7 in Section 10.4 | | (10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to: | (C) explain the effect of translations, reflections over the x- or y-axis, and rotations limited to 90°, 180°, 270°, and 360° as applied to two-dimensional shapes on a coordinate plane using an algebraic representation | (ii) explain the effect of
reflections over the x- or y-axis
as applied to two-dimensional
shapes on a coordinate plane
using an algebraic
representation | | | | | | | ਰ
6
ਰ
ਰ | is | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 559
561 | Example 2 in Section 10.4
Exercise 7 in Section 10.4 | | (10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to: | (C) explain the effect of translations, reflections over the x- or y-axis, and rotations limited to 90°, 180°, 270°, and 360° as applied to two-dimensional shapes on a coordinate plane using an algebraic representation | (iii) explain the effect of
rotations [of] 90° as applied to
two-dimensional shapes on a
coordinate plane using an
algebraic representation | | | | | | | 0 | of the state th | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 569
570 | Exploration 3 in Section 10.5
Exercise 1 in Section
10.5 | | (10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to: | (C) explain the effect of translations, reflections over the x- or y-axis, and rotations limited to 90°, 180°, 270°, and 360° as applied to two-dimensional shapes on a coordinate plane using an algebraic representation | (iv) explain the effect of
rotations [o] 180° as applied to
two-dimensional shapes on a
coordinate plane using an
algebraic representation | | | | | | | G | iv
N | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 569
570 | Exploration 3 in Section 10.5
Exercise 1 in Section 10.5 | | (10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to: | (C) explain the effect of translations, reflections over the x- or y-axis, and rotations limited to 90°, 180°, 270°, and 360° as applied to two-dimensional shapes on a coordinate plane using an algebraic representation | (v) explain the effect of rotations [of] 270° as applied to two-dimensional shapes on a coordinate plane using an algebraic representation | | | | | | | c | v | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 569
570 | Exploration 3 in Section 10.5
Exercise 1 in Section 10.5 | | (10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to: | (C) explain the effect of translations, reflections over the x- or y-axis, and rotations limited to 90°, 180°, 270°, and 360° as applied to two-dimensional shapes on a coordinate plane using an algebraic representation | (vi) explain the effect of
rotations [of] 360° as applied to
two-dimensional shapes on a
coordinate plane using an
algebraic representation | | | | | | | G
G
G
G | vi | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 569
570 | Exploration 3 in Section 10.5 Exercise 2 in Section 10.5 | | (10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to: | (D) model the effect on linear
and area measurements of
dilated two-dimensional
shapes | (i) model the effect on linear
measurements of dilated two-
dimensional shapes | | | | | | | 0
0
0 | | Instruction Assessment Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 573
583
583 | Exploration 2 in Section 10.6
Exercise 4 in Section 10.6
Exercise 5 in Section 10.6 | | (10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. | (D) model the effect on linear
and area measurements of
dilated two-dimensional | (ii) model the effect on area
measurements of dilated two-
dimensional shapes | | | | | |--|---|--|---|---|-------------------|---| | The student is expected to: | shapes
D
D
D | | Instruction
Assessment
Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 573
583
583 | Exploration 2 in Section 10.6
Exercise 4 in Section 10.6
Exercise 5 in Section 10.6 | | (11) Measurement and data. The student applies mathematical process standards to use statistical procedures to describe data. The student is expected to: | (A) construct a scatterplot and describe the observed data to address questions of association such as linear, non-linear, and no association between bivariate data | (i) construct a scatterplot | | | | | | | M
A
K | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 499
502 | Example 1 in Section 9.1
Exercise 1 in Section 9.1 | | (11) Measurement and data. The student applies mathematical process standards to use statistical procedures to describe data. The student is expected to: | (A) construct a scatterplot and
describe the observed data to
address questions of
association such as linear, non-
linear, and no association
between bivariate data | (ii) describe the observed data
to address questions of
association | | | | | | | A
A
A
A | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 499
502 | Example 1 in Section 9.1
Exercise 1 in Section 9.1 | | (11) Measurement and data. The student applies mathematical process standards to use statistical procedures to describe data. The student is expected to: | (B) determine the mean
absolute deviation and use this
quantity as a measure of the
average distance data are
from the mean using a data set
of no more than 10 data points | (i) determine the mean
absolute deviation | | | | | | | 6
6
6 | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 691
695 | Example 1 in Section 14.2
Exercise 4 in Section 14.2 | | (11) Measurement and data. The student applies mathematical process standards to use statistical procedures to describe data. The student is expected to: | (B) determine the mean
absolute deviation and use this
quantity as a measure of the
average distance data are
from the mean using a data set
of no more than 10 data points | (ii) use this quantity as a
measure of the average
distance data are from the
mean using a data set of no
more than 10 data points | | | | | | | g
6 | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 691
695 | Example 1 in Section 14.2
Exercise 4 in Section 14.2 | | (11) Measurement and data. The student applies mathematical process standards to use statistical procedures to describe data. The student is expected to: | (C) simulate generating random samples of the same size from a population with known characteristics to develop the notion of a random sample being representative of the population from which it was selected | | | | | | | | G | | Instruction
Assessment
Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 701
707
709 | Exploration 3 in Section 14.3 Exercise 3 in Section 14.3 Exercise 4 in Section 14.3 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (A) solve real-world problems
comparing how interest rate
and loan length affect the cost
of credit | (i) solve real-world problems
comparing how interest rate
affect[s] the cost of credit | | | | | | | A | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 660
666 | Example 2 in Section 13.2
Exercise 6 in Section 13.2 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (A) solve real-world problems
comparing how interest rate
and loan length affect the cost
of credit | (ii) solve real-world problems
comparing how loan length
affect[s] the cost of credit | | | | | | | Λ | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 660
666 | Example 2 in Section 13.2
Exercise 5 in Section 13.2 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (B) calculate the total cost of
repaying a loan, including
credit cards and easy access
loans, under various rates of
interest and over different
periods using an online
calculator | (i) calculate the total cost of
repaying a loan, including
credit cards, under various
rates of interest using an
online calculator (ii) calculator (iii) calculator (iii) calculator (iii) calculator | | | | | | | B | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 660
666 | Example 2 in Section 13.2
Exercise 6 in Section 13.2 | | (12) Personal financial literacy. The student applies mathematical process standards to | (B) calculate the total cost of repaying a loan, including | (ii) calculate the total cost of repaying a loan, including | | | | | |--|--|--|---------------------------|--|------------
---| | develop an economic way of thinking and
problem solving useful in one's life as a
knowledgeable consumer and investor. The
student is expected to: | credit cards and easy access
loans, under various rates of
interest and over different
periods using an online
calculator | credit cards, over different
periods using an online
calculator | | | | | | | 9 | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 660
666 | Example 2 in Section 13.2
Exercise 5 in Section 13.2 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (B) calculate the total cost of
repaying a loan, including
credit cards and easy access
loans, under various rates of
interest and over different
periods using an online
calculator | (iii) calculate the total cost of
repaying a loan, including easy
access loans, under various
rates of interest using an
online calculator | | | | | | | 5
5
8 | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 665
667 | Problem 2 in Section 13.2
Exercise 8 in Section 13.2 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (B) calculate the total cost of
repaying a loan, including
credit cards and easy access
loans, under various rates of
interest and over different
periods using an online
calculator | (iv) calculate the total cost of
repaying a loan, including easy
access loans, over different
periods using an online
calculator | | | | | | | B | v | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 665
667 | Problem 2 in Section 13.2
Exercise 8 in Section 13.2 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (C) explain how small
amounts of money invested
regularly, including money
saved for college and
retirement, grow over time | (i) explain how small amounts
of money invested regularly,
including money saved for
college, grow over time | | | | | | | | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 670
673 | Example 1 in Section 13.3
Exercise 4 in Section 13.3 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (C) explain how small
amounts of money invested
regularly, including money
saved for college and
retirement, grow over time | (ii) explain how small amounts
of money invested regularly,
including money saved for
retirement, grow over time | | | | | | | G | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 671
673 | Example 2 in Section 13.3
Exercise 5 in Section 13.3 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (D) calculate and compare
simple interest and compound
interest earnings | (i) calculate simple interest earnings | | | | | | | | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 647
653 | Example 1 in Section 13.1
Exercise 1 in Section 13.1 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (D) calculate and compare simple interest and compound interest earnings | (ii) calculate compound interest earnings | | | | | | | 0
0
1
0 | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 649
653 | Example 3 in Section 13.1
Exercise 5 in Section 13.1 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (D) calculate and compare simple interest and compound interest earnings | (iii) compare simple interest
and compound interest
earnings | | | | | | | d | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 651
654 | Example 4 in Section 13.1
Exercise 6 in Section 13.1 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (E) identify and explain the
advantages and
disadvantages of different
payment methods | (i) identify the advantages of different payment methods | | | | | | | 5
5
5
7
8 | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 664
667 | Exploration 4 in Section 13.2
Exercise 9 in Section 13.2 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (E) identify and explain the advantages and disadvantages of different payment methods | (ii) identify the disadvantages
of different payment methods | | | | | |--|--|--|---|---|-------------------|---| | | | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 665
667 | Problem 2 in Section 13.2
Exercise 9 in Section 13.2 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (E) identify and explain the
advantages and
disadvantages of different
payment methods | (iii) explain the advantages of different payment methods | | | | | | | | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 665
667 | Problem 2 in Section 13.2
Exercise 8 in Section 13.2 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (E) identify and explain the advantages and disadvantages of different payment methods | (iv) explain the disadvantages of different payment methods | | | | | | | | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 665
667 | Problem 2 in Section 13.2
Exercise 8 in Section 13.2 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (F) analyze situations to
determine if they represent
financially responsible
decisions and identify the
benefits of financial
responsibility and the costs of
financial irresponsibility | (i) analyze situations to
determine if they represent
financially responsible
decisions | | | | | | | | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 660
667 | Example 2 in Section 13.2
Exercise 11 in Section 13.2 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (F) analyze situations to
determine if they represent
financially responsible
decisions and identify the
benefits of financial
responsibility and the costs of
financial irresponsibility | (ii) identify the benefits of financial responsibility | | | | | | | | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 660
667 | Example 2 in Section 13.2
Exercise 11 in Section 13.2 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (F) analyze situations to
determine if they represent
financially responsible
decisions and identify the
benefits of financial
responsibility and the costs of
financial irresponsibility | (iii) identify the costs of financial irresponsibility | | | | | | | | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 |
660
667 | Example 2 in Section 13.2
Exercise 12 in Section 13.2 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (G) estimate the cost of a two-
year and four-year college
education, including family
contribution, and devise a
periodic savings plan for
accumulating the money
needed to contribute to the
total cost of attendance for at
least the first year of college | (i) estimate the cost of a two-
year college education,
including family contribution | | | | | | | | | Instruction
Assessment | 978-1-938858-08-6
978-1-938858-08-6 | 669
673 | Exploration 1 in Section 13.3
Exercise 1 in Section 13.3 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (G) estimate the cost of a two-
year and four-year college
education, including family
contribution, and devise a
periodic savings plan for
accumulating the money
needed to contribute to the
total cost of attendance for at
least the first year of college | (ii) estimate the cost of a four-
year college education,
including family contribution | | | | | | | | | Instruction
Assessment
Assessment | 978-1-938858-08-6
978-1-938858-08-6
978-1-938858-08-6 | 669
673
707 | Exploration 1 in Section 13.3 Exercise 2 in Section 13.3 Exercise 3 in Section 14.3 | | (12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to: | (G) estimate the cost of a two-
year and four-year college
education, including family
contribution, and devise a
periodic savings plan for
accumulating the money
needed to contribute to the
total cost of attendance for at
least the first year of college | (iii) devise a periodic savings
plan for accumulating the
money needed to contribute to
the total cost of attendance for
at least the first year of college | { | | | | |--|--|---|-------------|-------------------|-----|----------------------------| | | C | | Instruction | 978-1-938858-08-6 | 670 | Example 1 in Section 13.3 | | .:.:.:.:.:.:.:.:.:.:.:.: | G | iit | Assessment | 978-1-938858-08-6 | 673 | Exercise 3 in Section 13.3 | | [:::::::::::::::::::::::::::::::::::::: | G | ii | | | | : | | | G | | | | | |