ADDING AND SUBTRACTING FRACTIONS

Date:_____ Period:

SECTION 8.4 ADDITION AND SUBTRACTION OF FRACTIONS

VOCABULARY

DEFINITION	EXAMPLE
Common denominator a denominator shared	C 4 1
by several fractions	5 4 1 etc. have 8 as a com
Least common denominator: The least common	10D of deno
denominator (LCD) of P and k is the	- and - is (15)
LCM of n and m.	2 5
g Idea: How do we add and subtract fractions?	= 3 = -

PROBLEM 1

Compute the sum of $\frac{3}{8}$ and $\frac{2}{8}$. Explain how to obtain the answer.

add the numerators.

$$\frac{3}{8} + \frac{2}{8} = \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \left(\frac{1}{8} + \frac{1}{8}\right) = 5\left(\frac{1}{8}\right) = 5\left(\frac{1}{8}\right)$$

Write a rule that can be used for adding the fractions $\frac{a}{n}$ and $\frac{b}{n}$ (addition of fractions with like denominators).

add the numerators to add fractions with a common denominator:

$$\frac{a}{n} + \frac{b}{n} = \frac{a+b}{n}$$

Compute the sum $2 + \frac{3}{5}$.

$$\frac{5}{5} + \frac{5}{5} + \frac{3}{5} = \frac{13}{5}$$
 or $2\frac{3}{5}$ (improper) (mixed)

PROBLEM 2

Compute the difference $\frac{7}{9} - \frac{4}{9}$ and explain how to obtain the answer.

$$\frac{7}{9} - \frac{4}{9} = \left(\frac{1}{9} + \frac{1}{9} + \frac{$$

Write a rule that can be used to solve for $\frac{a}{n}$ minus $\frac{b}{n}$. How does this compare to the rule for sums with like denominators?

$$\frac{a}{n} - \frac{b}{n} = \frac{a-b}{n}$$
 if there is a common

denominator. Subtraction is the apposite of

addition (for the numerators)

EXAMPLE 1

If you eat $\frac{2}{3}$ of a candy bar, how much of the candy bar is left? Draw an area model to show this. Can you also show this using a linear model?

Compute the difference $2 - \frac{1}{4}$ and illustrate the process with either the area model or the linear model.

EXAMPLE 2

Explore how to use the ideas just learned to compute the sum of two fractions when the denominators are

Use the area model to compute the sum $\frac{1}{2} + \frac{1}{3}$.

Compute the sum $\frac{1}{3} + \frac{1}{4}$ by using the area model and then the equivalent fractions property to convert the initial fractions into equivalent fractions with like denominators.

$$\frac{1}{3} = \frac{4.1}{4.3} = \frac{4}{12}$$

Find the pattern to add the fractions $\frac{1}{a}$ and $\frac{1}{b}$ when a and b are not the same number and explain the use the LCM of a and b as the LCD

$$\frac{|a|b}{|a|b} + \frac{|a|}{|b|a} = \frac{|b+a|}{|a|b} = \frac{1}{|a|b}$$

PROBLEM 4

Find three common denominators for the fractions $\frac{1}{6}$ and $\frac{1}{4}$. Write each fraction in equivalent forms using the three denominators. What do you notice about these common denominators? Which denominator would be the best choice for computing the sum $\frac{1}{6} + \frac{1}{4}$? Why?

12, 24, 36	1	All are common multiples of 6 and 4.
-6 2 12	4 3 12	12 is nice because it is
4/24/6/	<u>6</u> 24 <u>9</u>	smaller, AND
PROBLEM 5	36	$\frac{2}{12} + \frac{3}{12} = \frac{5}{12}$ is in simplest

For each of the following sums:

- (1) find a common multiple for both denominators
- (2) use it to find equivalent fractions for each fraction
- (3) compute their sum
- (4) simplify your answer, if necessary.

a.
$$\frac{1}{9} + \frac{1}{12}$$
 36

b. $\frac{1}{8} + \frac{1}{12}$ 48

c. $\frac{1}{12} - \frac{1}{18}$ 36

 $\frac{4}{36} + \frac{3}{36} = \frac{7}{36}$

$$= \frac{3}{36} - \frac{2}{36}$$

$$= \frac{3-2}{36} = \frac{1}{36}$$

PRACTICE EXERCISES

1. Add or subtract the following fractions.

a.
$$\frac{3}{7} + \frac{1}{7}$$

$$\frac{3+1}{7} = \frac{14}{7}$$

$$d. \frac{7}{x} + \frac{3}{x}$$

$$\frac{7+3}{x} = \sqrt{\frac{10}{x}}$$

b.
$$2 - \frac{9}{14}$$

$$\frac{28}{14} - \frac{9}{14} = \frac{28 - 9}{14}$$

e.
$$\frac{a}{m} - \frac{3}{m}$$

$$\begin{array}{c} \text{C. } \frac{25}{36} + \frac{20}{36} \\ \frac{25 + 20}{36} = \frac{45}{36} = \frac{5}{4} \\ = \frac{9}{36} = \frac{1}{4} \end{array}$$

$$f. \frac{2x}{b} + \frac{3x}{b}$$

$$\frac{2x + 3x}{b} = \sqrt{5x}$$

2. Add or subtract the following fractions. Write your answers in simplest form.

a.
$$\frac{1}{5} + \frac{1}{4}$$

b.
$$\frac{1}{3} + \frac{1}{8}$$

$$\frac{8}{24} + \frac{3}{24} = \frac{8+2}{24}$$

c.
$$\frac{1}{7} - \frac{1}{3}$$

$$\frac{3}{21} - \frac{7}{21}$$

$$\frac{3-7}{21}$$
 (18 is the LCD) $\frac{2-3}{18}$

$$\frac{2-3}{18}$$
 $\frac{-1}{18}$
 $\frac{-1}{18}$

e.
$$\frac{1}{k} + \frac{1}{i}$$

$$\frac{j}{j^k} + \frac{k}{j^k}$$

f.
$$\frac{1}{2p} - \frac{1}{q}$$

g.
$$\frac{1}{r} + \frac{1}{r^2}$$

$$r+1$$

$$=\frac{r^2+r}{r^3}=\frac{r(r+1)}{r^3}$$

$$= \frac{r+1}{r^2}$$

SUMMARY (What I learned today)	