MULTIPLYING AND DIVIDING FRACTIONS

Name:

Period:

SECTION 9.1 MULTIPLICATION OF FRACTIONS

VOCABULARY

DEFINITION	EXAMPLE	
Reciprocal: if n is a non-zero number, the reciprocal (multiplicative inverse) is $\frac{1}{n}$. Also, $\frac{1}{n}$ in = 1	1 = 5.5=1	= and 5 ar
ig Idea: How do you multiply fractions?		of each oth

Big Idea: How do you multiply fractions?

EXAMPLE 1

Jane has $\frac{1}{2}$ yard of ribbon and cuts $\frac{1}{3}$ of its length. To do this, she finds out what is $\frac{1}{3}$ of $\frac{1}{2}$. How long is the piece of ribbon that she cut? Draw a number line to illustrate this length. Show this with an area model as well.

EXLORATION 1

a. Translate $\frac{1}{2}$ of $\frac{1}{5}$ into a multiplication problem and draw the corresponding picture to find the product.

b. Translate $\frac{1}{4}$ of $\frac{1}{3}$ into a multiplication problem and draw the corresponding picture to find the product.

$$\frac{1}{4} \cdot \frac{1}{3} = \boxed{\frac{1}{12}}$$

c. Predict $\frac{1}{6}$ of $\frac{1}{7}$ without drawing a model.

$$\frac{1}{6} \cdot \frac{1}{7} = \frac{1 \cdot 1}{6 \cdot 7} = \boxed{\frac{1}{42}}$$

d. Explain why multiplication of unit fractions is commutative. That is,

why is
$$\left(\frac{1}{m}\right)\left(\frac{1}{n}\right) = \left(\frac{1}{n}\right)\left(\frac{1}{m}\right)$$
?

So,
$$\frac{1}{m} \cdot \frac{1}{n} = \frac{1 \cdot 1}{m \cdot n} = \frac{1 \cdot 1}{n \cdot m} = \frac{1}{n} \cdot \frac{1}{m}$$

PROBLEM 2

What is $\frac{1}{2}$ of $\frac{3}{4}$?

EXPLORATION 2

Use the area model to illustrate and find the following answers.

a. What is $\frac{1}{2}$ of $\frac{2}{3}$?

b. What is
$$\frac{2}{5}$$
 of $\frac{2}{3}$?

$$\frac{2}{5} \cdot \frac{2}{3} : \boxed{4}$$

TEXAS Mathworks

c. What is $\frac{3}{5}$ of $\frac{4}{7}$?

d. Predict $\frac{3}{4}$ of $\frac{5}{7}$ without drawing a model.

$$\frac{3}{4} \cdot \frac{5}{7} = \frac{3.5}{4.7} = \frac{15}{28}$$

e. What do you notice about the product of two proper fractions?

The product is less than each of the factors.

f. What is the product of the fractions $\frac{a}{b}$ and $\frac{c}{d}$, where a, b, c and d are integers and each of b and d is not zero?

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

PROBLEM 3

Multiply the following fractions:

a.
$$\frac{1}{2} \cdot \frac{3}{4} = \frac{1 \cdot 3}{2 \cdot 4} = \frac{3}{9}$$

c.
$$\frac{3}{5} \cdot \frac{5}{3} = \frac{3.5}{5.3}$$
 e. $\frac{5}{9} \cdot \frac{3}{4} = \frac{5.3}{9.4}$

e.
$$\frac{5}{9} \cdot \frac{3}{4} = \frac{5 \cdot 3}{9 \cdot 4}$$

b.
$$\frac{3}{5} \cdot \frac{2}{7} = \frac{3 \cdot 2}{57} = \frac{6}{35}$$

d.
$$\frac{3}{4} \cdot \frac{4}{3} = \frac{3 \cdot 4}{4 \cdot 3} = \frac{12}{12} = 1$$

EXAMPLE 2

Compute the product $\frac{21}{32} \cdot \frac{16}{35} = \frac{336}{1120} = \frac{3}{10}$

$$\frac{21.16}{32.35} = \frac{21.16}{35.32} = \frac{21}{35} \cdot \frac{16}{32} = \frac{3}{5} \cdot \frac{1}{2} = \frac{3}{10}$$
PROBLEM 4

Compute each of the following and simplify as needed.

a.
$$5 \cdot \frac{3}{5} = \frac{5}{1} \cdot \frac{3}{5} = \frac{15}{5} = \boxed{3}$$

b.
$$\frac{36}{49} \cdot \frac{13}{15} = \frac{36 \cdot 13}{49 \cdot 15} = \frac{36 \cdot 13}{15 \cdot 49}$$
$$= \frac{12 \cdot 13}{5 \cdot 49} = \frac{156}{245}$$

c.
$$\frac{12}{17} \cdot \frac{5}{24} = \frac{12 \cdot 5}{17 \cdot 24} = \frac{12 \cdot 5}{24 \cdot 17}$$

= $\frac{12}{24} \cdot \frac{5}{17} = \frac{1}{2} \cdot \frac{5}{17}$
= $\frac{5}{34}$

d.
$$\frac{24}{25} \cdot \frac{15}{36} = \frac{24 \cdot 15}{25 \cdot 36} = \frac{24 \cdot 15}{36 \cdot 25}$$

$$\frac{24}{36} \cdot \frac{15}{25} = \frac{2}{3} \cdot \frac{3}{5} = \frac{2 \cdot 3}{3 \cdot 5}$$

$$\frac{3 \cdot 2}{3 \cdot 5} = \frac{2}{5}$$

EXPLORATION 3

What fraction can be multiplied by $\frac{2}{3}$ to get 1? In other words, what times $\frac{2}{3}$ equals 1? Explain your answer. Remember that the **reciprocal** of a number is the number that, when multiplied by the original number, equals 1. What is the reciprocal of $\frac{3}{4}$? Verify that the product of $\frac{3}{4}$ and its reciprocal is 1.

Make a conjecture about the reciprocal of any fraction $\frac{a}{b}$.

$$\frac{4}{3} \cdot \frac{3}{4} = 1$$

The reciprocal of a is ba.

TEXAS Mathworks

MATH EXPLORATIONS Part 2

For example, the reciprocal of $\frac{x}{y}$ is $\frac{y}{x}$. This makes sense because $\frac{x}{y} \cdot \frac{y}{x} = \frac{xy}{yx} = \frac{xy}{xy} = 1$.

You found that the product of $\frac{2}{3}$ and $\frac{3}{2}$ equals 1, and the fractions are reciprocals of each other. Notice that $\frac{3}{2}$ is a fraction larger than 1. In general, if a positive number is less than 1, then its reciprocal is greater than 1.

Rule 9.3: RECIPROCAL OF A FRACTION

In general, the **multiplicative inverse** or **reciprocal** of $\frac{x}{y}$ is the fraction $\frac{y}{x}$ since

$$\frac{x}{y} \cdot \frac{y}{x} = \frac{x \cdot y}{y \cdot x} = \frac{xy}{xy} = 1.$$

EXAMPLE 3

Lisa has 24 books in her library, one third of which are hardback books.

a. How many of her library books are hardback?

$$\frac{1}{3} \cdot 24 = \frac{1}{3} \cdot \frac{24}{1} = \frac{24}{3} = 8$$

b. How many of her books are not hardback?

$$24-8=[16]$$
 or $\frac{2}{3}.24=\frac{2.24}{3}=\frac{48}{3}=[16]$

PROBLEM 5

Compute each of the following and simplify if needed.

a.
$$12 \cdot \frac{1}{4}$$

$$\frac{12}{4} \cdot \frac{1}{4} = \frac{12}{4} = \boxed{3}$$

b.
$$12 \cdot \frac{1}{3}$$

$$\frac{12}{1} \cdot \frac{1}{3} = \frac{12}{3} = \frac{14}{3}$$

TEXAS Mathworks

MATH EXPLORATIONS Part 2

$$C. \quad \frac{4}{5} \cdot \frac{1}{3}$$

d.
$$\frac{3}{7} \cdot 35$$

$$\frac{3}{7} \cdot \frac{35}{1} = \frac{3 \cdot 35}{7 \cdot 1} = \frac{35 \cdot 3}{7 \cdot 1}$$
$$= \frac{35}{2} \cdot \frac{3}{1} = 5 \cdot 3 = 15$$

PROBLEM 6

Find the products of each of the following problems. Write your answer as an improper fraction in simplest form and as a simplified mixed number.

a.
$$4\frac{1}{2} \cdot 3\frac{2}{3}$$

= $\frac{9}{2} \cdot \frac{11}{3} = \frac{99}{6} = \frac{33}{2} = \frac{16}{2}$

c.
$$2\frac{3}{4} \cdot 4\frac{2}{3}$$

$$= \left(\frac{2 \cdot 4 + 3}{4}\right) \left(\frac{4 \cdot 3 + 2}{3}\right)$$

$$= \frac{11}{4} \cdot \frac{14}{3} = \frac{154}{12}$$

$$= \frac{77}{6} = \frac{72 + 5}{6} = 12\frac{5}{6}$$

b.
$$3\frac{2}{5} \cdot 1\frac{1}{3}$$

$$= \left(\frac{3 \cdot 5}{5} + \frac{2}{5}\right) \left(\frac{3}{3} + \frac{1}{3}\right)$$

$$= \frac{17}{5} \cdot \frac{4}{3} = \frac{68}{15} = \frac{48}{15}$$

d.
$$3\frac{4}{5} \cdot 7\frac{1}{3}$$

$$= \frac{3 \cdot 5 + 4}{5} \cdot \frac{7 \cdot 3 + 1}{3}$$

$$= \frac{19}{5} \cdot \frac{22}{3} = \frac{418}{15}$$

$$= \frac{405 + 13}{15} \cdot 27\frac{13}{15}$$

SUMMARY (What I lea	rned today)		