RATES, RATIOS AND PROPORTIONS

Name:	Key		Date:	Period:	
-------	-----	--	-------	---------	--

SECTION 10.5 SCALING

VOCABULARY

DEFINITION	EXAMPLE
Scale factor: If rectangle A has dimensions b and h, and B has dimensions kb and kh, k is a scale factor,	

Big Idea: How can we use rates and ratios to scale figures?

EXPLORATION 1: Discuss the different ways the following rectangles can be compared.

															4	_	_
7				A											4		_
												C			4		_
													1				
																	_
			В														_
																	_
											E						
		D	4				_									Н	
		4					_										
_			_	\perp	_												
			_	_													
						L											
1																	
						L											
		F									G						
				1			-										
						_	-										
				_	-	_	_										

a. What are the attributes of a rectangle?

- area

b. How would you group these rectangles together if you had to sort them? Which would you pair with which?

answers will vary.

Ex: Z, B, C, E, G have the same ratio of side lengths c. Which rectangles have exactly the same shape as

rectangle Z? Explain.

B, C, E, and G have

the same shape but

different sizes, their

sides have a 2 to 3

EAA3 WIATIWORKS						
Rectangle	Height	Base				
Z	3	2				
А	2	6				
В	4	6				
С	6	9				
D	5	10				
E	8	12				
F	7	9				
G	10	15				

d. Complete the following table. What do you notice about rectangles B, C, E and G?

e. What do rectangles B, C, E & G have in common?

PROBLEM 1

Suppose we start with the rectangle P below. What is the scale factor from P to R? From R to T? From T to T? From R to P? From P to T? From T to P?

P to R 2

R to P 2

T to T ______

EXPLORATION 2

Rectangle

R

A

B

C

D

E

Make a 4 by 8 rectangle on a blank grid paper and label it R. Create 5 more rectangles that have the same shape but different size from R and label them A, B, C, D and E. What is the scale factor of each new rectangle in relation to the rectangle R? will vary, examples below.

a. Complete the table below and complete the d

Length

4

5

Width

8

10

omplete the data. A_{NS} were						
Scale Factor	Perimeter	Area				
1	24	32				
5	30	50				
2	48	128				

b. Did you create a rectangle that is smaller than R? If not, make one now and label it F.

example in table c. What is the scale factor from R to F? Make a conjecture about scale factors less than 1.

Example: 1 Scale factors less than I occur when the figure "becomes" smaller

d. Make a rectangle the same shape as R that has length 6 units long. Label it G. What is its scale factor?

12

scale factor = 3 6=4k

e. Make a new rectangle using a scale factor of $\frac{1}{4}$. Label it H. What are the dimensions of this new

rectangle? How can you check to see if the scale factor is $\frac{1}{4}$?

1 = 4 = 8 so 4 is the scale factor

f. Make a rectangle with the same shape as R that has length 3 units long. Label it J. What is the scale 3 J scale factor = 3 3 = 4/k factor for this rectangle?

EXAMPLE 1

Sue is making a dessert from a recipe that will serve 3 people. The recipe uses 5 tablespoons of chocolate, and 2 cups of milk.

a. Sue wants to serve six people. How much milk will she need?

3 people to 6 people scale factor = 2

(2 cups of mik) (2) = (4 cups of milk)

TEXAS Mathworks

MATH EXPLORATIONS Part 2

b. Sue decides to invite four more people. How much milk will she need now? What is the scale factor between her final recipe and the original?

Scale factor = X
$$\frac{3x}{3} = \frac{10}{3}$$

$$x = \frac{10}{3}$$

$$x = \frac{10}{3}$$

$$x = \frac{10}{3}$$
or $6\frac{2}{3}$ aps of milk

c. On another occasion, Sue uses 7 tablespoons of chocolate. How much milk should she use this

× is the scale factor
$$\frac{5x}{5} = \frac{7}{5}$$
(2 cups of milk) ($\frac{7}{5}$) = $\frac{14}{5}$ cups of milk
$$x = \frac{7}{5}$$
or $2\frac{4}{5}$ cups of milk

PROBLEM 2

Make a 5 units by 9 units rectangle on grid paper and label it Rectangle M.

Construct a new rectangle N using a scale factor of 0.6. Label the new dimensions of rectangle N.

PROBLEM 3

Suppose Rectangle A is a 6 by 9 rectangle. Draw Rectangle B so that the scale factor from A to B is $\frac{1}{3}$.

a. What is the scale factor from B to A?
$$\frac{3}{3}$$
 $\frac{2k}{2} = \frac{6}{2}$ $k = \frac{6}{2} = 3$

Draw a Rectangle C so that the scale factor from B to C is 2. 4

c. What is the scale factor from A to C?
$$\frac{2}{3}$$
 $\frac{6k}{6} = \frac{4}{6}$ $k = \frac{4}{6} = \frac{2}{3}$ d. What is the scale factor from C to A? $\frac{3}{2}$ $\frac{4k}{4} = \frac{6}{4}$ $k = \frac{6}{4} = \frac{3}{2}$

e. What do you notice about the scale factors from A to B and B to A? From A to C and C to A? reciprocals

PROBLEM 4

a. Draw a rectangle that is 3 inches by 4 inches. On a map with a scale factor of 1 inch = 20 miles, how big an area does the rectangle represent?

Area = (60)(80) = [4800 miles 2]

b. What are the dimensions of a rectangle that represents an area 50 miles wide and 80 miles long on

- the map? What is the area of the scaled rectangle? What is the area represented by the map?

 Dinensions on map: 50miles 2.5 inches 80mi Lin 4 inches Area represented: (2.5)(4) = 10 in²

 Area represented: (50 miles)(80 miles) = 4000 miles² of 10 in 2 (20 mi) = 4000 miles 2 PRACTICE EXERCISES
 - 1. Mrs. Freese is using a projector to enlarge a picture of her schools mascot to paint on her classroom wall. If the original picture's dimensions are 4 in by 6 in, and she wants to make it 10 ft by 15 ft, what scale factor will she use?

$$(4.1) = (10 \text{ ft})$$

 $k = \frac{10 \text{ ft}}{4 \text{ in}} = \frac{5 \text{ ft}}{2 \text{ in}}$
 $5 \text{ ft} = (5 \cdot 12 \text{ in}) = 60 \text{ in}$
 $k = \frac{60 \text{ in}}{2 \text{ in}} = \frac{30 \text{ = k}}{2 \text{ in}}$

- 2. Decrease the length and the width of rectangle M by $\frac{1}{2}$ to form rectangle N.
 - a. What is the scale factor from M to N?

b. What is the scale factor from N to M?

SUMMARY (What I learned today)	