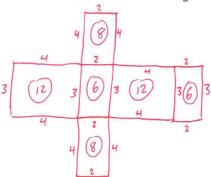
GEOMETRY

11

Name:______ Date:_____

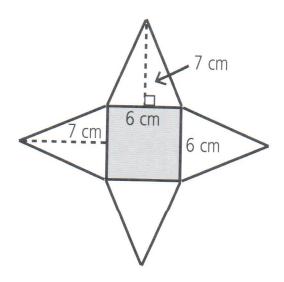
Period:


SECTION 11.7 SURFACE AREA AND NETS

VOCABULARY

DEFINITION	EXAMPLE
Surface area: area needed to cover the surface of a three-dimensional figure	
Lateral surface area:	
Sum of the areas of the non-base sides	
Total surface area:	
lateral surface area + surface area of bases	
Nets: "flatened" exterior of a three-dinensia	
Slant Height: the height of a side of a	1= slant
Slant Height: the height of a side of a pyramid (not the height of the pyramid)	height

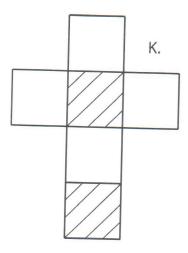
Big Idea: How do we find surface area of prisms and pyramids?

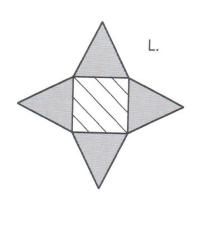

Draw a net for a rectangular prism with side lengths of 2 x 3 x 4 units, and find the surface area.

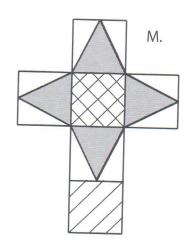
Can you determine a pattern, or formula, that can be used to determine the surface area of a rectangular prism? How will this be different for a cube?

EXPLORATION 1

Find the surface area of the square pyramid by examining the net for the pyramid given below.




Determine


slant height (L) =
$$7 \text{ cm}$$

area of base (B) = $6 \cdot 6 = 36 \text{ cm}^2$
area of lateral faces = 84 cm^2
Total surface area = 120 cm^2

EXPLORATION 2

Below are two nets, a net of a cube and a net of a square pyramid. Using the formula for the total surface area of a prism, which is S=2B+Ph, can you create a formula to calculate the surface area of a pyramid?

A. What is different about nets K and L?

K: 2 bases, 4 square sides

L: 1 base, 4 triangular sides

B. What is similar about nets K and L?

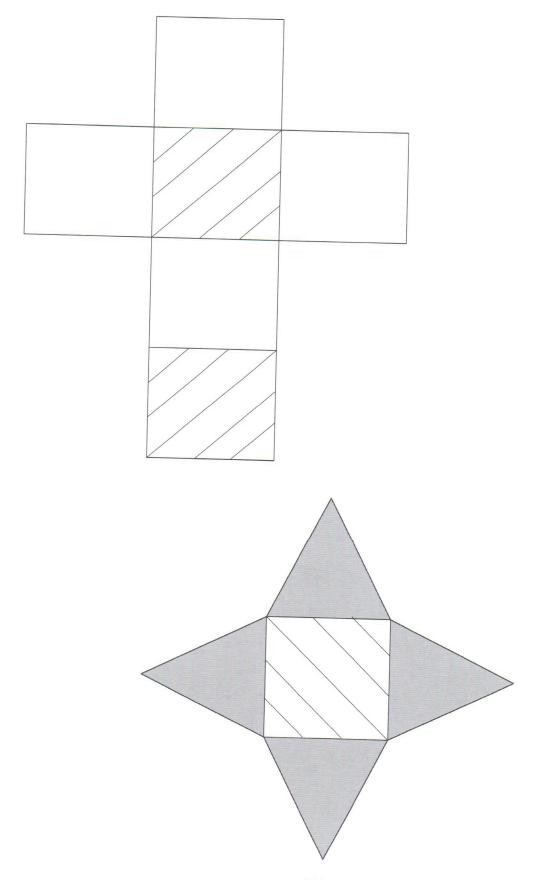
share a base & number of sides

C. Figure M. shows Net K combined with Net L. What is the relationship between their areas?

Area of L LArea of K

D. How can we change the formula for the surface area of a cube to find the surface area of the square

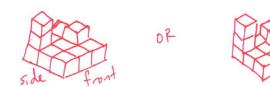
pyramid? cube: 2(bases) + 4 (lateral sides)


Pyramid: 1 (base) + 4 (triangular lateral sides) A Area = 1/2 bh

Area of square pyramid = 52 + 4(1/2 s2) = 352

In general: $S = B + \frac{1}{2}Pll$ where P is the perimeter of the base of the pyramid

This page is intentionally left blank.

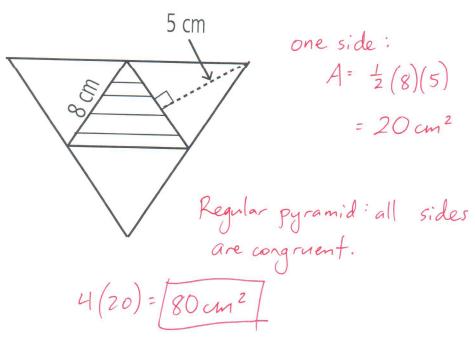


This page is intentionally left blank.

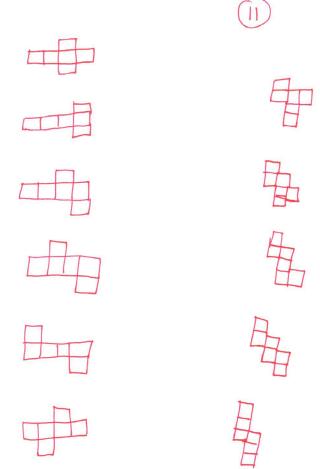
EXPLORATION 3

Consider the following two-dimensional views of a three-dimensional solid. Create the three-dimensional figure that corresponds to the three views. Is there only one such figure? Could there be more?

Top View: Front View: Side View:


PRACTICE EXERCISES

1. What is the surface area of a pizza box with side lengths of $24" \times 24" \times 2"$?


$$2(24.24) + 2(24.2) + 2(2.24) =$$

$$1152 + 96 + 96 = \boxed{1344 \text{ sq. inches}}$$

2. Find the surface area of a regular pyramid with a triangular base. The dimensions are given in the figure.

3. How many different nets does a cube have? Draw as many as you can.

SUMMARY (What I learned today)	